RoHS 指令対応 RS232C・TCP/IPプロトコルコンバータ

Enet-S

ユーザーズマニュアル WP-08-250402

第8版 2025年4月

データリンク 株式会社

、安全にお使いいただくために必ずお読みください

火災の原因になります

正しい電源電圧でお使いください。

湿気や埃、油煙、湯気が多い所には置かないでください。

暖房器具の近くや直射日光があたる場所など、高温の場所で使用したり放置しないでください。

たこ足コンセントや配線器具の定格を超える使い方はしないでください。

電源ケーブルに加工や熱を加えたり、重いものを載せるなどで傷をつけないでください。

内部に異物を入れないで〈ださい。(水厳禁)

本体及び付属品を改造しないでください。

排気口のある機種は、排気口を塞いで使用しないでください。

感電や怪我の原因になります

正しい電源電圧でお使いください。

電源ケーブルに加工や熱を加えたり、重いものを載せるなどで傷をつけないでください。

内部に異物を入れないください。

本体及び付属品を改造しないでください。

濡れた手でコンセントにさわらないでください。

雷発生時は、本製品に触れたり周辺機器の接続をしたりしないでください。

設置、移動の時は電源プラグを抜き、周辺機器の接続を切り離してください。

故障やエラーの原因になります

本体及び付属品を改造しないでください。

排気口のある機種は、排気口を塞いで使用しないでください。

<u>万一、発熱を感じたり、煙が出ていたり、変なにおいがするなどの異常を確認した場合は、</u> ただちに電源を外し使用を中止してお買いあげの販売店にご連絡下さい。

本書の一部または、全部を無断で複製、複写、転載、改変することは法律で禁じられています。 本書の内容および製品の仕様、意匠等については、改良のために予告なく変更することがあります。 本書の内容については、万全を記して作成いたしましたが、万一ご不審な点や誤り、記載漏れなどお気付きの点がございましたら、ご連絡下さいますようお願い致します。

本書に記載されている各種名称、会社名、商品名などは一般に各社の商標または登録商標です。

目次

序 章	はじめに	1
序 - 1	梱包内容の確認	1
序 - 2	本機の特徴	
序 - 3	このマニュアルの読み方	
序 - 4	各部の名称と働き (LEDと SW)	3
序 - 5	本書で使われる用語	
第1章	通信を 行う 前の 準備	5
1 - 1	電源の投入	5
1 - 2	通信条件の設定を行う(プログラムモード)	
1-2-1	プログラムモードとは	
1-2-2	パソコンと 本機を接続する	6
1 - 3	プログラムモードへの入り方、終了方法	6
1-3-1	PROG SW によるプログラムモード	7
1-3-2	コマンドによるプログラムモード	7
1-3-3	TELNETによるプログラムモード	
1 - 4	プログラムモード 状態での設定方法	
1-4-1	基本的な操作方法	10
1-4-2	表示画面	
1 - 5	設定項目の解説	
1-5-1	各項目の意味、設定範囲、デフォルト値	12
第2章	簡単な通信テスト	24
2 - 1	ping を 使った 簡単な 通信テスト	24
第3章	- 伝送仕様について	25
3 - 1	受信パケット 識別	25
	ARPに対する 応答	
	TCP/IPコネクションの開設	
	TCP/IPコネクションの終了	
J - 4	101 / 15 コ イ ノ ノ コ ノ 切 減 亅	

3 - 5	データの 伝送	28
3 - 6	ICMP	
3 - 7	UDP	
3 - 8	実際のデータ 伝送について	
3 - 0 3-8-1	実際の	
3-8-1 3-8-2		
3-8-2 3-8-3	イーサネット 機器 Enet-S RS232C 機器へのデータ 伝送 開設中のコマンド 及びリ ザルト	
3-8-4	用設中のコマファ 及びサリルド	
3 - 9	シリアルチャンネルのフロー制御	
3-9-1	XON/XOFFフロー制御	
3-9-2	RTS/CTS フロー制御	
3-9-3	DTR/DSRフロー制御	36
<u> </u>		0.7
第4章	コマンドとリザルト	
4 - 1	コマンドとリ ザルトのフォーマット	
4-1-1	コマンドフォーマット	37
4-1-2	リザルトフォーマット	
4-1-3	コマンド、リザルト 無効	38
4 - 2	コマンド・リ ザルト 一覧	38
4-2-1	コマンド 一覧	38
4-2-2	リ ザルト 一覧	39
4 - 3	各コマンドの 説明	39
4-3-1	テーブル nn 番と TCP/IP 開設をする。	39
4-3-2	テーブル nn 番と UDP 開設をする	40
4-3-3	TCP/IPあるいは UDPを終了する。	41
4-3-4	状態を調べる	42
4-3-5	プログラムモードに入る	42
4-3-6	設定した相手機器に対して通信テストを実行する	42
4-3-7	取得相手 MAC の 一時削除	43
4-3-8	ROM バ-ジョンの 表示	43
4 - 4	コマンド 以外の 原因による 事象	44
4-4-1	相手機器からの SYN パケットの 受信	44
4-4-2	Enet-S から TCP/IPへの伝送が不可能な場合	44
4-4-3	相手機器から RST (リ セットパケット) を 受信した 場合	44
4-4-4	ARPブロ <i>ー</i> ドキャストを 受信した 場合	
4-4-5	ICMPパケットの 受信	45
4-4-6	相手機器より FIN (切断要求パケット) を 受信した 場合	45

•••••	• • • • • • • • • • • • • • • • • • • •	
第5章	使用例	46
5 - 1	Enet-Sをシステムに組み込む為の手順	46
5 - 2	使用例	
5-2-1	ホストワークステーション 等との接続	
5-2-2	Enet シリーズ同士の通信	
5-2-3	測定器、バーコードリーダ 等の 接続	48
5-2-4	モデムの接続	49
5-2-5	マルチポ-トでの使用	50
第6章	物理的仕樣	53
6 - 1	ハード構成、仕様	53
6 - 2	使用環境、消費電流	53
6 - 3	形状、重量	
6 - 4	RS232C ピンアサイン	55
6 - 5	RS232C 機器接続例	
6 - 6	添付ケーブル 結線図	58
6 - 7	RS232C 接続ケーブル 長	
6 - 8	イーサネットコネクタ (RJ45) ピンアサイン	58
第7章	その他	59
_	FAQ (よく ある 質問について)	
	付録 用語解説	
	ユーザサポートのご案内	
	ファームウェアの更新	
	ファームウェアの更新作業	
保証規定	;	66

Е	3	次
	3	//

............

序 章 はじめに

序-1 梱包内容の確認

Enet-Sには以下の品目が含まれます。 品目数量をご確認下さい。 不足がある場合は、弊社営業部までご連絡下さい。

Enet-S 本体 1 台

調歩同期用 R S 2 3 2 C クロスケーブル 1.8 m

両端に Dsub9ピンメスの RS232Cのクロスケーブルです。

Enet-Sと端末機器との接続に使用します。

Enet-Sユーザーズマニュアル (本誌)

1 册

1 本

設定に必要な通信ソフト【TERM WIN】は弊社HPよりダウンロードして〈ださい。

詳しい使い方は、同時にダウンロードされる専用マニュアルをご参照ください。

http://www.data-link.co.jp/

序 - 2 本機の特徴

Enet-Sは、RoHS指令に対応しています。

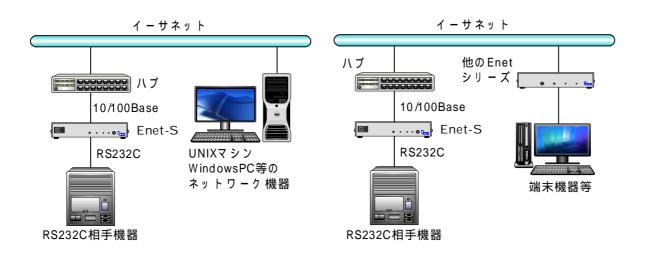
RoHS 指令とは

2003 年 1 月、EU (欧州連合) は電子電機機器に含まれる特定有害物質 の使用を制限する制定を可決いたしました。

同指令は 2006 年 7 月 1 日より 施行され、それ以降特定有害物質を含む対象 製品は原則として同地域では販売することができません。

特定有害物質6品種

「鉛・水銀・カドミウム・六価クロム・PBB (多臭素化ビフェニール)・ PBDE (多臭素化ビフェニルエーテル)」


調歩同期式 RS232C 機器は、Enet-Sを介して UNIXマシン等とネットワーク通信することができます。

イ - サネットは、10BaseTまたは100BaseTxに対応しています。接続に合わせて自動認識を行います。

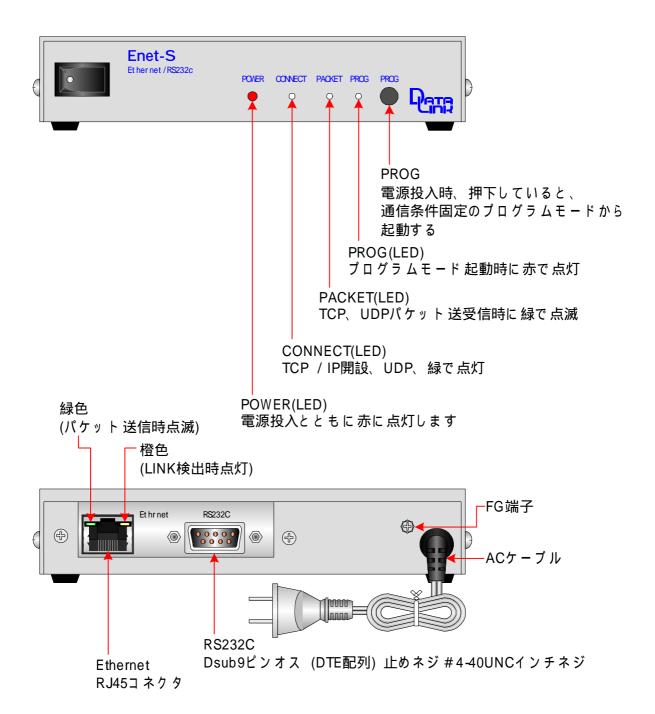
イーサネット側は、TCP/IP、UDP、ARP、TELNET 1を内部に標準で搭載しています。ネットワーク通信は、TCP/IP**ソケ**ットあるいは UDP 等を用いて Enet-Sと通信を行います。

TCP/IPコネクションの開設 / 終了は、Enet-S 側 / ホスト側のどちらからも可能です。通信条件、イーサネット 関係のアドレス 等は、プログラムモードで対話式に設定が可能です。これらの条件設定は、フラッシュ ROM (電気的消去、編集可能) に記憶させます。設定は、RS232Cチャンネルとターミナルソフトを使用した方法と TELNET LOGIN による方法が可能です。

1: ネットワーク 端末より Enet-S に対して TELNET LOGIN を行う事で Enet-S の 設定値変更 / Enet-S の再起動が可能です。

序 - 3 このマニュアルの読み方

初めて Enet-Sをご使用になる場合は、このマニュアルを次の順に読みながら実行して下さい。 Enet-Sは使用に先立ち、1台1台に設定を行ってからでないと動作しませんので、必ず下記の手順を実行して下さい。


〔[第1章 通信を行う前の準備]を参照にしてEnet-Sに動作条件を設定します。

、[第2章 簡単な通信テスト]を参照にして2点間の物理的な接続を確認します。

[第3章 伝送仕様について] [第4章 コマンドとリザルト] をよくお読み頂いた上でシステム構成で必要な設定を行います。

[第5章 使用例]を参照にして実際の通信を行います。 RS232C機器を接続時には [第6章 物理的仕様]の中にRS232Cケーブル接続の例がありますので接続機器に合わせたケーブルをご利用下さい。

序 - 4 各部の名称と働き (LEDと SW)

序 - 5 本書で使われる用語

TCP/IPチャンネル

イーサネットに接続されるチャンネルもしくはコネクタ部の総称

RS232Cチャンネル

RS232C 機器に接続されるチャンネルもしく はコネクタ 部の総称

自機

Enet-Sと端末機器を一体としたネットワーク上の識別単位

相手機器

Enet-Sと TCP/IPソケット 通信によって、イーサネットを介してネットワーク 通信するサーバを含む通信相手機器の総称

端末機器

RS232Cに接続される端末機器の総称

フラッシュ ROM

電気的消去、編集可能な ROM。 パソコン 等でメモリスイッチ 等に使用されている ICの 名称

TERM WIN

弊社 HPより f ウンロードした TERM WIN は、パソコンを使用して Enet-S のプログラムモードを実行する 為に、使用します。

また、通信テストにも使用します。

キー入力が RS232C に出力され、RS232C からの入力は画面に表示されます。 プログラムモード

プログラムモードとは、各種条件を設定する際の Enet-Sの状態を言います。 ネットワーク関係のアドレスやRS232Cの通信条件等は、利用に先立ち一度プログラムモードで設定を行う必要があります、不揮発性メモリに記憶される為、その後は電源を入れるだけで設定された条件で動作します。 プログラムモードの実行には以下の2通りの方法があります。

- 1) Enet-S の RS232C ポートを 使用して、 RS232C ポートを 持つパソコン + ターミナルソフトで 設定を 行う 方法。
- 2) Enet-Sのイーサネットポートを使用して、TELNETが起動可能な端末より 設定を行う方法。

$C_R L_F$

キャリッジリターン (ODh)、ラインフィード (OAh)の 2バイト。

コマンド、リザルトの文字列の説明等でこの文字がある場合、 ^図 の 2バイトが付加されています。

第1章 通信を行う前の準備

1 - 1 電源の投入

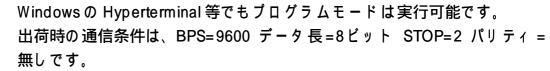
AC100Vにコンセントを差し込み、フロントの電源SWを ONにすると電源投入となります。 POWERの LEDが赤で点灯します。 また、PROGと CONNECTと PACKET の LED が緑で点滅します。

1 - 2 通信条件の設定を行う (プログラムモード)

1 - 2 - 1 プログラムモードとは

Enet-Sは、各種通信条件、相手機器のアドレス等をフラッシュ ROM に記録して、その設定条件で動作します。従って、ご利用前に、各種条件をフラッシュ ROM に予め設定しておく必要が有ります。プログラムモードとは、フラッシュ ROMへの編集、書き込み作業を行うモードです。

フラッシュ ROMは、電源を切ってもその内容が消去されることはありません。再度、電源投入した後、設定された内容で動作します。フラッシュ ROMへの書き込み繰り返し寿命は、約10万回です。プログラムモード終了時に、一括して書き込みを行いますので、通常の使用では充分の回数です。

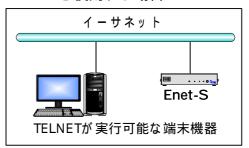

フラッシュ ROMへの書き込みは以下の2つの方法が可能です。

Enet-Sのシリアルチャンネルを使用してターミナル機能を持つ端末機器 (パソコン等)を使用する方法。

Enet-Sのイーサネットポートを使用して TELNETが使用可能な端末機器から 書き 込みを行う 方法。

どちらの方法もプログラムモードを対話的に編集する事が可能です。

メ モ シリアルチャンネルを使用する場合で端末機器がWindowsの環境下にある 場合は、TERM WINが使用できます。



1 - 2 - 2 パソコンと本機を接続する

シリアルチャンネルを使用する場合

TELNETを 使用する 場合

1-3 プログラムモードへの入り方、終了方法

入り方

詳細は、1-3-1, 1-3-2, 1-3-3を参照して下さい。

正しくプログラムモードに入ると、パソコン画面または TELNET 端末には、

*** PROGRAM MODE *** 🖫 が送信されプログラムモードへ入った事を知らせます。この時、PROG LED が赤〈点灯します。この状態がプログラムモードで、終了の操作を行って通常状態に戻るまで続きます。

終了方法

END 🖫 を送出し、プログラムモードを終了します。

Enet-Sは、END 🖫 を受信すると以下のように動作します。

1: Update and Reboot 設定変更値を更新して Enet-Sを再起動しプログラム

モードを終了します。

2: Quit and Reboot 設定変更を破棄して Enet-S を 再起動しプログラム

モードを終了します。

3: Update and Quit 設定変更を行いプログラムモードを終了します。

4: Quit 設定変更を破棄してプログラムモードを終了します。

Select number:

処理番号 + エンターキーの入力後、*** PROGRAM END *** 🖫 を返送して プログラムモードを終了します。

ご注意

変更内容をフラッシュ ROMに書き込むには<u>約1秒</u>かかります。<u>この間に電</u>源を落としますと設定内容が壊れる可能性があります。

プログラムモード終了後に電源を落とす場合は、プログラムモード終了メッセージ確認後、必ず<u>1秒以上</u>時間を置いてから電源を落としてください。 TELNETによるプログラムモードでReboot以外の場合は、設定内容更新後、必ず<u>1秒以上</u>時間を置いてから電源を落としてください。

1 - 3 - 1 PROG SW によるプログラムモード

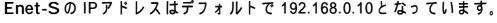
パソコンをターミナルとして準備したら、PROG SW を押しながら Enet-Sの電源を投入して下さい。

この時の、プログラムモードでの通信条件は固定です。

通信速度: 9600bps データ長: 8ビット ストップビット: 2ビット パリティ: 無し端末機器の通信条件を上記に合わせて使用して下さい。

この方法は、次の様な場合に有効です。

コマンド無効の設定を行ったあとで、変更の必要が発生した。 通信条件の設定を忘れてしまった。


1 - 3 - 2 コマンドによるプログラムモード

TCP/IPコネクション開設中などの状態ではプログラムモードへは入れません。 シリアルチャンネルへ@PROG 「RLF コマンドを送出する事でプログラムモードに入ります。 コマンドの認識およびプログラムモード時の通信条件は、現在設定されている通信条件となります。

1 - 3 - 3 TELNETによるプログラムモード

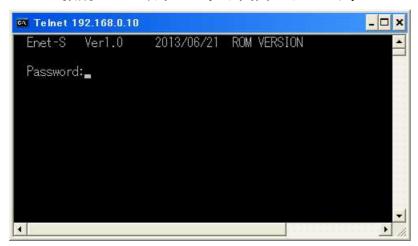
イーサネットを介して Enet-Sと TELNET 通信可能な端末よりプログラムモードに入ります。 TCP/IPコネクション 開設中やデータ 通信中でもプログラムモードへ入る事が可能です。

ご注意

Enet-Sを接続するネットワークが上記アドレスのまま使用しても問題がない事を確認して下さい。 以下の様な場合にはそのままの IPアドレでTELNET 通信を行うと問題が発生する可能性があります。

接続するネットワークのアドレス空間が上記デフォルトと異なる場合。既にデフォルトのアドレスが他の機器で使用されている場合。

このような場合は、一度、前述1-3-2、1-3-3の方法にて使用可能なIPアドレスを設定した後に行うか、影響のないセグメント内でTELNETによる設定変更を行います。


(例: Enet-Sと 端末の 2 台のみをイーサネット 接続する。)

..............

以下に Windows での TELNET Login の例をあげます。 DOSプロンプトより 以下のコマンドを入力します。

C:\text{YWINDOWS} telnet 192.168.0.10

TELNET接続されて以下のような画面となります。

Password:に Enet-S で設定 (後述プログラムモード設定項目参照) されたパスワードを入力しエンターキーを押します。

デフォルトのパスワードは Enet-Sです。

(パスワードは表示されません)

正しいパスワードが入力されると *** PROGRAM MODE *** 🖫 が表示されプログラムモードに入ります。

誤ったパスワードを入力した場合は、以下の様なメッセージが表示されパスワード の再入力となります。

Login incorrect

Password:

プログラムモードに入った後の設定変更等の操作は、前述1-3-1,1-3-2と同様です。後述[1-4プログラムモード状態での設定方法] [1-5設定項目の解説]を参照して下さい。

TELNETによるプログラムモードの終了

TELNETにより プログラムモードを 終了する 場合は、他の 方法と 同様に END(end) 「保」を 入力します。

すると *** PROGRAM END *** 🖫 が表示されプログラムモードが終了した事を通知します。(他の方法とここまでは同様です。)

しかし TELNETによるプログラムモードでは、設定変更を行った値はこの時点では書き込まれずに、ENDメッセージの後に以下の様なメッセージが表示されます。 それぞれのメッセージの意味は以下のとおりです。

1:Update and Reboot 設定変更値を更新して Enet-Sを再起動し TELNET

セッションを終わる。

2:Quit and Reboot 設定変更を破棄して Enet-Sを 再起動し TELNET セッ

ションを終わる。

3:Update and Quit 設定変更を行い TELNET セッションを終わる。

4:Quit 設定変更を破棄して TELNET セッションを終わる。

Select number:

Select number の所に行いたい処理の番号を入力しエンターキーを押します。 $1 \sim 2$ を選択時点で TCP/IPデータ通信コネクションが開かれている場合に下記メッセージが表示されます。データ通信コネクションが開かれていない場合は、選択された処理が行われます。

Warning: Under communication running

1:Ok 2:Cancel Select number:

Select number の所に行いたい処理の番号を入力しエンターキーを押します。 1 を入力の場合は、データ通信の有無に関わらず、前述で選択された 1 ~ 3 の処理を行います。

2を選択の場合は、再度 1~4の選択メッセージが表示されます。

ご注意

1~3の番号の処理を実行した場合、プログラムモード内で設定変更した値が書き変わったり、Enet-Sが再起動します。この場合には、TCP/IPコネクション中のデータ通信用ポートの状態が維持出来なくなります。(イーサネットチャンネル、シリアルチャンネル共に)よって現在コネクション中の場合、強制終了されます。

また、再起動が行われた場合は Enet-Sの電源再投入と同じ動作となります。 $1 \sim 3$ を選択する場合は、現在のデータ通信状態が破棄される事をご承知の上で、注意して行って下さい。

Update処理が行なわれると、Update Completed 「風」のメッセージが表示されます。 Reboot処理が行なわれると、Reboot Completed 「風」のメッセージが表示されます。 TELNET セッションを終了の際に、Disconnected 「風」のメッセージが表示されます。

1 - 4 プログラムモード状態での設定方法

1-4-1 基本的な操作方法

設定変更の方法は = 【エンターキー)が基本です。 画面表示している書式と同じようにキー入力します。 エンターキーは、端末の Enterキーを押すことを表しています。 ASCIIコードの英大文字・英小文字・数字・記号を使用します。

例) 通信速度の変更例 19200bpsに変更する。

B=19200 \blacktriangleleft (エンターキー) または b=19200 \blacktriangleleft (エンターキー) (プログラムモードを終了するまで通信条件は変わりません。)

もし誤った書式や設定できない値を入力した場合は?を返します。

エンターキー (直前に文字を打たずに Enterキーのみ)を押すと、現在の設定値ページまたは次の設定値ページを表示します。

事前に変更入力があった場合 変更入力された項目のページを表示 事前に変更入力が無い場合 現在表示の次のページを表示

設定画面のページは全部で3ページあります。

表示ページを変えるには、前述のエンターキーによる方法の他にページ番号指定による方法があります。

例) 2 🚚 (エンターキー) = (2ページ目を表示する)

1 - 4 - 2 表示画面

...............

1ページ目

*** PROGRAM 1/3 ***

Enet-S Ver1.0 2013 /06 /21 ROM VERSION

B=9600 BPS [300 /600 /1200 /2400 /4800 /9600 /19200 /38400 /76800 /

153600 /14400 /28800 /57600 /115200 /230400]

D=8 DATA [7 /8]
S=2 STOP [1 /2]
P=N PARITY [N /E /O]

CR=D DELIMITER CR CODE [E /D]

LF=D DELIMITER LF CODE [E /D]

ETX=D DELIMITER ETX CODE [E /D]

DEL= DELIMITER CODE (Hex)

TIM= 0.00 TIMEOUT (sec)

COM=@ COMMAND PROMPT (Max4Byte)

ECHO=E ECHO [E /D]

DTR=D DTR HARD FLOW [E /D] or TCP CONNECT CONTROL [O /S]

XON=D XON/XOFF FLOW [E /D]

CD= CD ON CONNECT

RMSG=E MESSAGE OUT TO RS232C [E /D]

OKMSG=D PROGRAM MODE OK MESSAGE OUT [E /D]

RTS=E RTS HARD FLOW [E /D]

2ページ目

*** PROGRAM 2/3 ***

MAC=00:C0:84:06:06:07 ETHERNET ADDRESS

IP=192.168.0.10 IP ADDRESS

PORT=0000 SOURCE PORT NUMBER

NETM=0.0.0.0 NETMASK

DEFG=0.0.0.0 DEFAULTGATEWAY
BRDA=255.255.255.255 BROADCASTADDRESS
WAIT=120 TIME WAIT (sec)
USER= FTP USER NAME

PASS=Enet-S FTP or TELNET PASS WORD

OBSP=0000 OBSERVATION UDP PORT NUMBER

PW= 0T POWER ON CONNECT

PWCT= 10 POWER ON CONNECT RETRY COUNTER [0 : INFINITY]
PWTM= 60 POWER ON CONNECT RETRY TIMER [30-1200 Sec]
DCT= 0 DISCONNECTED RETRY COUNTER [999 : INFINITY]
DTM= 60 DISCONNECTED RETRY TIMER [30-1200 Sec]

TRY=N RETRY COUNTER [N /S]

WTM= 0 KEEP WATCH TIMER [0-60 Min]

M=D MULTI PORT [E /D]

HEAD=D UDP TABLE HEADER [E / D]

3ページ目

***	PROGRAM 3/3	***
-----	-------------	-----

1 110 010 111 070		
HOST IP ADDRESS	DEST PORT	HOST ETHERNET ADDRESS
1I=0.0.0.0	1P=0000	1M=00:00:00:00:00:00
2l=0.0.0.0	2P=0000	2M=00:00:00:00:00:00
3l = 0.0.0.0	3P=0000	3M=00:00:00:00:00
4l = 0.0.0.0	4P=0000	4M=00:00:00:00:00:00
5I=0.0.0.0	5P=0000	5M=00:00:00:00:00
6l=0.0.0.0	6P=0000	6M=00:00:00:00:00
7l = 0.0.0.0	7P=0000	7M=00:00:00:00:00
8l = 0.0.0.0	8P=0000	8M=00:00:00:00:00
91 = 0.0.0.0	9P=0000	9M=00:00:00:00:00
10I=0.0.0.0	10P=0000	10M=00:00:00:00:00
11I=0.0.0.0	11P=0000	11M=00:00:00:00:00:00
12I=0.0.0.0	12P=0000	12M=00:00:00:00:00
13I=0.0.0.0	13P=0000	13M=00:00:00:00:00
14I=0.0.0.0	14P=0000	14M=00:00:00:00:00
15I=0.0.0.0	15P=0000	15M=00:00:00:00:00
16I=0.0.0.0	16P=0000	16M=00:00:00:00:00
17I=0.0.0.0	17P=0000	17M=00:00:00:00:00
18I=0.0.0.0	18P=0000	18M=00:00:00:00:00

1 - 5 設定項目の解説

1-5-1 各項目の意味、設定範囲、デフォルト値

ROM VERSION

ソフトバージョンを表示します。

シリアル通信速度

デフォルト 9600

B=nnnn CRLF

nnnn bpsとします。

値は 300,600,1200,2400,4800,9600,19200,38400,76800,153600 14400,28800,57600,115200,230400 の何れかです。

データビット長

デフォルト 8

D=8 中 データビット 長を 8ビットとします。

D=7 🖫 データビット 長を 7ビットとします。

...............

ストップビット長

デフォルト 2

S=2 回写 ストップビット 長を 2ビットとします。

パリティ デフォルト N

P=N 🖫 パリティビット無しとします。

P=E ဩ녀 パリティを偶数 (EVEN) とします。

P=O 🖫 パリティを奇数 (ODD) とします。

端末機器からのデリミタ指定

デフォルト 各項ともD

CR=D 図写 CR (0Dh) はデリミタでは無いとします。

CR=E □ デリミタを CR (0Dh) とします。

LF=D 図に LF (0Ah) はデリミタでは無いとします。

LF=E 🖫 デリミタを LF (0Ah) とします。

ETX=D 🖫 ETX (03h) はデリミタでは無いとします。

ETX=E 🖫 デリミタを ETX (03h) とします。

デリミタコードは、端末機器からバイト単位で受信したデータ列を1パケットの単位として相手機器に送信する為の区切りとして使用されます。

詳細は [3-8-1 RS232C 機器 Enet-S イーサネット 機器へのデータ 伝送] を参照して下さい。

端末機器からのデリミタコードの指定

デフォルト 指定無し

DEL=hhhh デリミタコード hhhhとします。

hhhhは、00hから FFhの16進数です。

hh 回回 で指定の場合は、hhの1バイトデリミタとなります。

hhhh 回口で指定の場合は、hhhhの2バイトデリミタとなります。

例) (CR=D,LF=D,DEL=0D0A) の場合 CR (0Dhex) に続いて LF (0Ahex) を受信するとデリミタとなります。

前述の CR=,LF=,ETX=, のデリミタ指定を E とした場合、DEL= で同様のコードを指定の場合、2 バイトデリミタとならない場合があります。

例) CR=E DEL=0D12の場合 CR (0Dhex) 受信でデリミタ扱いとなります。

DEL= 図写で指定無しとなります。

デリミタコードは、端末機器からバイト単位で受信したデータ列を1パケットの単位として相手機器に送信する為の区切りとして使用されます。

詳細は [3-8-1 RS232C 機器 Enet-S イーサネット 機器へのデータ 伝送] を参照して下さい。

端末機器からのタイムアウト値

デフォルト タイムアウト無し

TIM=nn.nn 回中 タイムアウト値を nn.nn にします。

nn.nn は数値です。(単位秒)

TIM=1 回归, TIM=.02 回归の様な入力も可能です。

TIM= 🖫 で、タイムアウト指定無しとなります。

タイムアウトの設定値は、選択シリアル通信速度により制限があります。以下の表を参考にして設定して〈ださい。

通信速度	設定可能最大 タイムアウト値	設定可能最小 タイムアウト値
300	TIM = 99.99	TIM = 0.04
600	TIM = 99.99	TIM = 0.02
1200 ~ 4800	TIM = 99.99	TIM = 0.01
9600	TIM = 61.40	同上
19200	TIM = 30.70	同上
38400	TIM = 15.35	同上
76800	TIM = 07.70	同上
153600	TIM = 03.80	同上
14400	TIM = 40.80	同上
28800	TIM = 20.10	同上
57600	TIM = 10.00	同上
115200	TIM = 05.20	同上

通信速度に対応した最大/最小タイムアウト値を超える値を設定した場合、設定された通信速度に対応した最大/最小タイムアウト値が自動的に選択されます。

例) 通信速度 9600bps Tim=90.0を入力しても Tim=61.40となります。 通信速度 600bps Tim=0.01と入力しても Tim=0.02となります。

詳細は [3-8-1 RS232C 機器 Enet-S イーサネット機器へのデータ伝送] タイムアウトの指定を参照して下さい。

コマンドプロンプト文字の指定及びコマンド無効の指定 デフォルト @

COM=aaaa 回口 コマンドプロンプトを aaaa の文字列とします。 aaaa は、1 から 4 個の文字列です。

コマンドの先頭にこの文字列が必要となります。

リザルトの先頭にこの文字列が付きます。

コマンドプロンプト文字を変更する際に指定して下さい。

COM= 🖫 でコマンドすべてが無効となります。(リザルトも無し)

開設時以外でのシリアルチャンネルエコーバック指定 デフォルト E

ECHO=E 🖫 シリアルチャンネルにエコーバックします。

ECHO=D 🖫 エコーバック無しとします。

ハードフローの指定またはコネクションコントロール指定

デフォルト:D

DTR=D 回口 DTR/DSRフロー無効とします。
DTR/DSRフロー有効とします。

DTR=S 🖘 TCP/IPコネクションの状態を通知します。

コネクション開設中は、Enet-SのDTR出力信号がHighとなります。 コネクション非開設時は、Enet-SのDTR出力信号がLowとなります。

メッセージ出力を無効とした場合の、コネクション開設状態の判断が可能となります。

通信相手登録テーブル (プログラムモード 3/3ページで設定の nnl =等) に設定の通信相手がコネクション通知の対象となります。

バックグラウンドで TELNET LOGIN されていても DTR 出力は変化しません。

DTR=O 国 TCP/IPコネクションの開設 / 切断を端末機器からコ (英字のオー) マンドを使用せずにコントロールします。

Enet-Sの DSR 入力信号が Low から High に変化するとテーブル 1番に登録された通信相手機器に対して TCP/IPコネクション開設要求を送出します。正しくコネクションが開設されると Enet-Sの DTR 出力信号が High となり端末機器に通知します。

Enet-Sの DSR 入力信号が High から Low に変化すると 開設中の相手機器とのコネクションを 切断します。コネクションが正しく 切断され、Enet-Sが待機状態になると、Enet-Sの DTR 出力信号を Lowとしてコネクションの 切断を 端末機器に通知します。

本機能を使用して通信を行う相手機器は1番目の登録テーブル (プログラムモード 3/3ページで設定の nnl=等) に設定して \langle ださい。2番目以降の通信相手には、この機能は使用出来ません。

コマンドを出せない端末機器から TCP/IPコネクションの開設 / 切断を行う場合に設定します。

ソフトフローの指定

デフォルト D

 XON=D 回回
 ソフトフロー無効とします。

 XON=E 回回
 ソフトフロー有効とします。

CD 入力での TCP/IPコネクション 開設 デフォルト 指定無し

CD=nn 🖫 テーブル nn 番と CD オン 時に 開設します。

nnは、1から 18のテーブル番号です。

指定有りの場合は、CDオフでコネクションを終了します。

CD=0 (数字ゼロ) 同同で指定無しとなります。

指定無しの場合はCD入力は無視されます。

(オンでもオフでも関係なし)

前述、DTR=HorDTR=mm 指定及び、後述nnPW = mmXの設定は、排他設定となります。

CD=の設定を行うと、DTR=Hなどの設定はできません。

補 足 モデムと接続してこの機能を利用する例が [6-2-4 モデムの接続] に説明 されています。

シリアルチャンネルへのメッセージの出力 デフォルト: E

RMSG=E ဩ日 シリアルチャンネルへメッセージを出力します。

RMSG=D ဩ占 シリアルチャンネルへメッセージを出力しません。

プログラムモード設定値正常時のリザルトの有無の選択 デフォルト:D

OKMSG=D回に プログラムモードの設定が正常でも何も返送しません。

OKMSG=E回回 プログラムモードの設定が正常時に、"OK+回回"のリザルトを返送します。

プログラムモードの設定をスクリプト等のプログラムで設定の場合、正しく設定が行われた事の確認に使用出来ます。

RTS/CTSハードフロー制御の指定

デフォルト:E

RTS=E RTS/CTS フロー制御有効とします。

RTS=D 図に RTS/CTS フロー制御無効とします。

自機イーサネットアドレス

MAC=00:C0:84:hh:hh:hh この項目は、変更できません。 hh:hh:hh 部分は、個々の装置にユニークな番号です。

自機IPアドレス

デフォルト 192.168.0.10

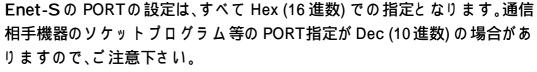
IP=ddd.ddd.ddd.ddd 🖫 自機 IPアドレスを設定します。

IPアドレスは、32ビット長 (4バイト) で示されます。8ビット (1バイト) 単位をドットで区切り、各8ビットを 10 進数で表示します。

個々の ddd の部分は、0~255 です。

ソースポートアドレス

デフォルト 0000


PORT=hhhh [SQLF]

ソースポート番号を設定します。

番号は、16ビット長(2バイト)で示されます。16進数で指定します。

ポート番号は0000の状態は未設定となります。

ご注意

例) Enet-S 側で PORTを 1000 (Hex) と 指定した 場合、通信相手機器で設定する Enet-S のポート は、10 進数で 4096 (Dec) と 指定します。ポート 番号の 0 ~ 1024 (0400h) までは well-known portとして 予約されています。 通常のデータ 通信には別の番号を設定して下さい。

................

ネットマスクアドレス

デフォルト 0.0.0.0

NETM=ddd.ddd.ddd 대다

サブネットの場合のネットマスク値を設定します。

設定値は、IPアドレスと同様な書式です。

下図 [異なるネーットワーク間の通信]を参照して下さい。

デフォルトゲートウェイアドレス

デフォルト 0.0.0.0

DEFG=ddd.ddd.ddd.ddd CRLF

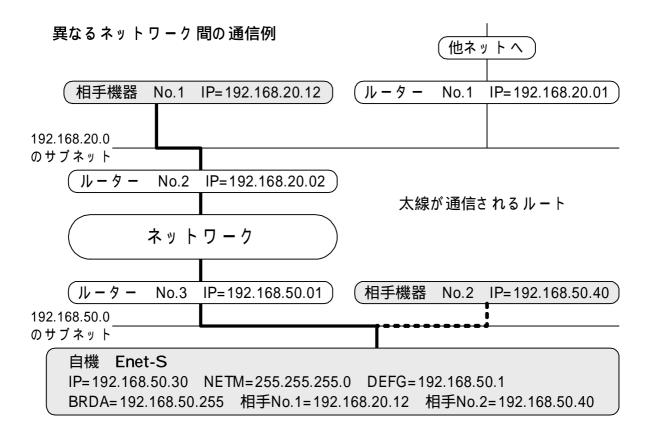
サブネットの場合のデフォルトゲートウェイ値を設定します。

設定値は、IPアドレスと同様な書式です。

下図 [異なるネーットワーク間の通信]を参照して下さい。

ブロードキャストアドレス

デフォルト 255.255.255.255


BRDA=ddd.ddd.ddd 대다

サブネットのブロードキャストアドレス値を設定します。

設定値は、IPアドレスと同様な書式です。

この値は、IPと NETM の設定で連動して変化します。特に変更を要する時に このコマンドを使用します。

下図 [異なるネットワーク間の通信]を参照して下さい。

................

タイムウェイトの時間を変更する

デフォルト 120

WAIT=nnn 🖫 タイムウェイトを nnn 秒とします。

nnn は 1 ~ 999 秒です。

通常は、120 秒ですが、システムでこの値を変更しても良い場合にのみ変更して下さい。

[3-4 TCP/IPコネクションの終了]を参照して下さい。

拡張用の設定

デフォルト なし

USER=XXXXXXXX CRLF

xxxxxxxx は、最大8文字です。

通常設定の必要はありません。

TELNET Login 時のパスワードを指定する

デフォルト:Enet-S

PASS=XXXXXXXX CRLF

XXXXXXXX は、最大8文字です。

TELNETで相手よりアクセスがあった時、PASS=で指定されている文字列とチェックを行います。一致しなければ TELNET 通信は行いません。

PASS= 図写で指定無しとなります。

PASS 無しの場合、TELNET Login にてセキュリティ なしでの Enet-S の再起動が可能となってしまいます。安全の為、PASSの設定を行う事をおすすめします。

Enet 監視プログラム用ポート番号

デフォルト: 0000

OBSP=hhhh (유니

拡張用のポート番号です。

通常、設定の必要はありません。

電源投入後の自動 TCP/IP 開設または UDP 通信状態移行 デフォルト: 0T PW=nnx 🖫

テーブル nn 番に xのプロトコルで電源投入時に自動開設します。

nn は 1 ~ 18 の 設定済み相手機器テーブル番号です。

xには、T(TCP/IP)または、U(UDP)を指定します。

PW=0T 🖫 もしくは PW=0U 🖫 で指定無しとなります。

もし開設出来ない場合は、後述PWTM=nnnで指定のnnn時間毎に再実行します。この間CONNECTがゆっくり点滅します。後述PWCT=nnで指定のnn回数リトライ後、開設できない場合は、この処理を中止します。また、この動作中に他の登録相手機器 (PW=nnxのnn以外)からコネクション開設要求があった場合、開設要求があった相手機器と開設動作を優先して行い、自動開設の動作は無効となります。

電源投入後の自動 TCP/IP 開設または UDP 通信状態移行 リトライ 回数 デフォルト:10

PW CT=nn 역년

前述、PW=nnxを指定時に有効となります。

開設が出来ない場合のリトライ回数の指定となります。

nnにリトライ回数を指定します。 nnにゼロを指定の場合、リトライを無限に繰り返します。

電源投入後の自動 TCP/IP 開設または UDP 通信状態移行 リトライ 間隔 デフォルト:60

PWTM=nnnn [유니

前述、PW=nnxを指定時に有効となります。

開設が出来ない場合のリトライ間隔 (単位:秒) の指定となります。

指定可能な数値は30~1200 (Sec)です。

TCP/IPコネクション 切断時の自動再接続 リトライ 回数指定

デフォルト:0

DCT=nn 🖫 (nn は 0 ~ 999 回の 指定が 可能です。)

前述、PW=nnTを指定時に有効となります。

TCP/IPを開設後、TCP/IP切断要求パケット finや強制終了パケット RST、またはこの機器より TCP/IP切断を行った場合などでTCP/IPのコネクションが切断時に指定された数値回数分再接続を試みます。

ZEROを指定の場合は、再接続は行いません。

また、999を指定の場合は、再接続が成功するまで無限に再接続を試みます。 よって ZERO 以外を指定時に、相手と 通信可能状態であれば TCP/IPを 切断後に すぐに開設状態となります。

TCP/IPコネクション 切断時の自動再接続 リトライ 間隔指定

デフォルト:0

DTM=nn 🖫 nn は 30 ~ 1200 秒の指定が可能です。

前述、PW=nnT、DCT=2以上を指定時に有効となります。

再接続を試行するリトライ間隔の指定となります。

TCP/IPデータの再送、終了要求パケット FIN の再送の指定

デフォルト: N

TRY=N RIF

Enet-Sは、通信相手に TCP/IPデータパケットを送信後、相手よりの応答 ACK パケットを待ちます。この時相手より応答が無い場合 (ケーブル断、相手機器ダウン)データパケットの再送を行います。

再送は以下のタイマ間隔で行われます。

500mesc後 1 秒後 2 秒後 4 秒後 8 秒後 16 秒後 32 秒後 64 秒後 70 秒後 70 秒後 70 秒後 70 秒後 70 秒応答ウェイトした後に強制終了します。

再送タイムアウトまで約9分かかります。

TRY=S RIF

500mesc後 1 秒後 2 秒後 4 秒後 8 秒後 16 秒後 32 秒応答ウェイトした後に強制終了します。

再送タイムアウトまで約1分です。 ご利用の環境で上記タイムアウト間隔が長い場合、こちらを選択する事が出来ます。

TRY=NE Rught または TRY=SE Rugh

データの再送が発生時毎に RS232C へ以下のメッセージを送信します。

@WAITING ဩ圩 (@はCOM= で設定したコマンド文字列です。)

RMSG=E 時のみ有効な機能です。

TRY=N 「RIF」または TRY=S 「RIF」でメッセージ送信は行なわれなくなります。

無通信時のコネクション強制終了タイマーの指定 デフォルト: 0 WTM=nn 🖘 nn は 0 ~ 60 までの 10 進数で指定。単位は分です。 0 指定時は、この機能は無効となります。

 $1 \sim 60$ を指定の場合、データ通信コネクション中の無通信時間を計測します。通信相手よりイーサネットパケットの受信が無〈、Enet-Sからも何のパケットも送信していない場合で、設定時間を経過するとリセットパケットを送出してコネクションを強制終了します。なお、 $1 \sim 60$ を設定していても、TELNET LOGIN時は無効となります。

...............

マルチポートの指定

デフォルト:D

M=D 때다

マルチポートモードで動作しません。

M=E GRLF

マルチポートモードで動作します。

Enet-Sのソースポートを2つ指定可能となります。

定した2つのソースポートをそれぞれ受信用/送信用とする事が可能となります。 使い方の詳細については、P63 [第6章 使用例] [6-2-5 マルチポートでの使用] をご参照下さい。

U D P 動作時の受信データ送信元テーブル 表示指定 デフォルト:D HEAD=D

UDP 動作時に相手機器より 受信のデータにヘッダーを付けません。

HEAD=E

UDP動作時に相手機器から受信したデータの前に登録相手のテーブルNo ヘッダーを付加して RS232C へ出力します。

ヘッダー例)

@nn:ABCDEFG

@ は前述 COM= で指定のコマンドプロンプト文字列です。

nn は後述プログラムモード 3/3ページで指定のイーサネット 通信相手登録のテーブル Noとなります。

01~18までの数字文字列です。

ABCDEFGは実際に受信のデータとなります。

複数の通信相手を設定時に複数の相手より UDPデータを受信の場合、どの相手より 受信のデータか判別出来ない場合に使用します。

Enet-Sの RS232C 状態及びイ-サネットステ-タスの表示

STAT GIF

下記のリザルトが返送されます。

STATUS=xxxxxxx (nnn.nnn.nnn.nnn,hhhh)

RTS=H CTS=H DTR=H DSR=L CD= L

xxxxxx はイ-サネット 遷移状態が返送されます。

nnn.nnn.nnn.nnn は通信相手の IPアドレスです。

(無通信時は TBL No1 の相手)

hhhh は通信相手の PORT Noです。

(無通信時は TBL No1 の 相手)

RS232Cのステ - タスは H (READY) または L (BUSY) で表示されます。

相手IPアドレス

デフォルト 0.0.0.0

nnl=ddd.ddd.ddd 더니

テーブル nn 番の相手 IPアドレスを ddd.ddd.ddd.dddとします。

nn は、1 ~ 18 のテーブル番号です。

設定値は、IPアドレスと同様な書式です。

既に設定されていた テーブル nn番の IPアドレスを異なる値に設定した場合は、同じテーブルの相手イーサネットアドレスを消去します。

相手ポート番号

デフォルト 0000

nnP=hhhh ဩ日 テーブル nn 番の相手ポート 番号を hhhhとします。

nn は、1 ~ 18 のテーブル番号です。

設定値は、ソースポートと 同様な書式です。(16進数で指定 = 1000と 指定の場合、 10 進数の 4096 を指定の意味)

0000を設定の場合、このテーブルナンバーは未設定となります。 相手機器と通信を行なうには必ず必要な設定です。

相手イーサネットアドレス

nnM=hh:hh:hh:hh:hh

この項目は、設定する必要が有りません。

ARPにより自動的に取得します。開設失敗の場合は、自動的に消去します。

nnM=0 回日で消去する事が出来ます。消去された場合は、再度ARPからの手順となります。

全ての設定値をデフォルトとする

DEFAULT SILF

フラッシュ ROM 内の全ての設定値がデフォルト値となります。

第2章 簡単な通信テスト

2 - 1 ping を 使った 簡単な 通信テスト

1) Enet-Sと 通信するイーサネット 相手機器が UNIXマシンまたは Windowsマシンの 場合

Enet-S 自身の IPアドレスを 設定する。 ([第1章]を 参照)

例: IP=192.168.0.130 (同一セグメント内の場合の例です)

通信を行う相手機器より ping コマンドを実行する。

Microsoft (R) Windows XPでの ping テスト 成功例

C:\forall WINDOWS > ping 192.168.0.130

Pinging 192.168.0.130 with 32 bytes of data:

Reply from 192.168.0.130: bytes=32 time=2ms TTL=255

Reply from 192.168.0.130: bytes=32 time=2ms TTL=255

Reply from 192.168.0.130: bytes=32 time=1ms TTL=255

Reply from 192.168.0.130: bytes=32 time=1ms TTL=255

上記が返送されれば、物理的な接続は問題ありません。

Microsoft (R) WindowsXPでの ping テスト 失敗例

C:\forall WINDOWS > ping 192.168.0.130

Pinging 192.168.0.130 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

上記のようなメッセージが返送の場合は、ケーブル接続ノ経路等をご確認下さい。

2) Enet-Sと 通信を行う 通信相手機器が pingコマンドを実行できない場合は、相手機器が接続されるセグメント内の ping が可能な機器より 実行します。

(テスト方法/結果は1)と同様です。

UNIXマシン等での ping の実行方法は機器のマニュアル等を参考にして下さい。 information Request/Reply

Timestamp /Timestamp Reply

Address Mask Request/Reply には対応しておりません。

第3章 伝送仕様について

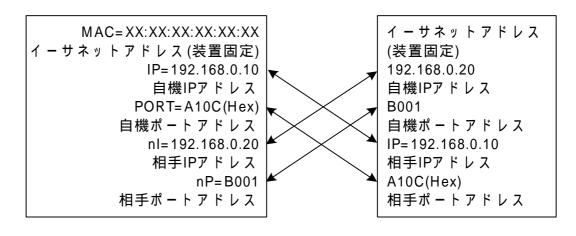
3 - 1 受信パケット識別

Enet-Sは、自機宛のパケットか否かの判定を以下のように行います。

イーサネットヘッダ部

デストネーションアドレス (送信先MACアドレス)と 自機 MACアドレスの一致 ソースアドレス (送信元 MACアドレス)と 自機保持の相手 MACアドレスの一致 IPヘッダ 部

デストネーション IPアドレス (送信先 IP) と 設定した 自機 IPアドレスの一致 ソース IPアドレス (送信元 IPアドレス) と 設定した 相手 IPアドレスの一致 TCPヘッダ 部


デストネーションポート No (送信先ポート No) と 設定した 自機ポート No の 一致 ソースポート No (送信元ポート No) と 設定した 相手ポート No の 確認

受信したソースポート Noと 設定した相手ポート Noが不一致の場合、一時的に ソースポート Noに合わせて通信を行います。

また、TCPプロトコルの SEQ No、ACK Noのチェックを行います。 送出パケットは相手アドレスと適切な SEQ,ACKを作成して出力します。

例)IPアドレス、ポート番号の設定例

下記のような設定で、自機と相手機器との間でコネクションの開設が出来ます。

矢印のような関係になっている必要があります。

Enet-Sのポートナンバーの指定は Hex(16 進数)です。相手機器のポート指定を 10 進で行なう 場合は、上記例の場合、A10C=41228 (Dec) 、B001=45057 (Dec) となります。

Enet-Sのポートナンバー指定で、0000 は未設定扱いとなります。必ず 0000 以外の設定が必要です。

3 - 2 ARPに対する応答

Enet-Sは、通信相手機器 (サーバ)、ルータ 等が発行する ARPブロードキャストに 応答します。次の条件で、ARP応答として自機イーサネットアドレスを送信します。

ARPで問い合わせているターゲット IPと 自機 IPの一致

ARP発行元IPと登録されている相手IPの一致

これにより ARP発行元は、Enet-Sのイーサネットアドレスを得ることが出来ます。 また、Enet-Sからコネクションを開設する際に、相手のイーサネットアドレスを 取得していない場合は、ARPブロードキャストを発行します。

応答してきた相手のイーサネットアドレスを取得します。

但し、後述のサブネットの条件を設定した場合は、上記と異なります。[1-5 設定項目の解説]中のNETM等の設定ページ補足の異なるネットワーク間の通信を参照して下さい。

3 - 3 TCP/IPコネクションの開設

Enet-Sからのコネクション開設

Enet-Sから TCP/IPのコネクションを開設するには、3つの方法があります。 端末機器からシリアルチャンネルへの OPENコマンド 送信

端末機器から制御線のコントロールによる接続 (DTR=O 又は CD=nn の設定) Enet-S の電源投入時自動接続 (PW=nnT の設定)

上記のコネクション開設要求により、Enet-Sは、SYNパケット (開設要求パケット)を発行して開設要求手順を実行します。

この際、相手イーサネットアドレスを未取得の場合は、ARPブロードキャストを発行して取得後に、SYNを発行します。

相手機器からのコネクション開設

相手機器から SYN パケット 受信した場合、開設手順を実行します。

どちらの場合も、開設に成功の場合 メッセージ又は制御線で開設の成功を通知して、データ通信状態となります。

Enet-Sがコネクション開設中は、他の通信相手機器からの開設要求は受け付けません。この時、接続要求を送出の他の相手に対して、コネクションリフューズドを送信します。

3 - 4 TCP/IPコネクションの終了

Enet-Sからコネクションの終了

Enet-S から TCP/IPのコネクションを終了するには、2つの方法があります。 端末機器からシリアルチャンネルへの QUITコマンド送信

端末機器から制御線のコントロールによる終了 (DTR=Oの設定時)

Enet-Sは、FINパケット (終了要求パケット)を発行して終了手順を実行します。 正しく 終了手順が行われた後に、タイムウェイト状態となります。

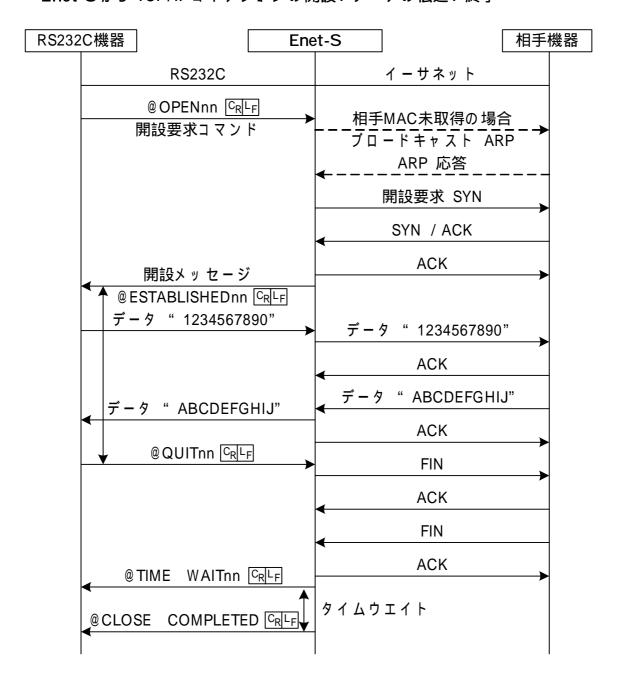
タイムウェイトは、最後に発行されたパケットが確実に消滅するまでの時間で、 ネットワーク回線のハード的要因で規定されています。 この間、同じ相手に対 して SYN (開設要求) を発行する事は出来ません。

相手機器からのコネクションの終了

相手機器からの FIN パケットを 受信した 場合も 終了手順を 実行します。 また、相手機器より RSTパケット (強制終了パケット)を 受信の 場合もコネクションを 終了します。

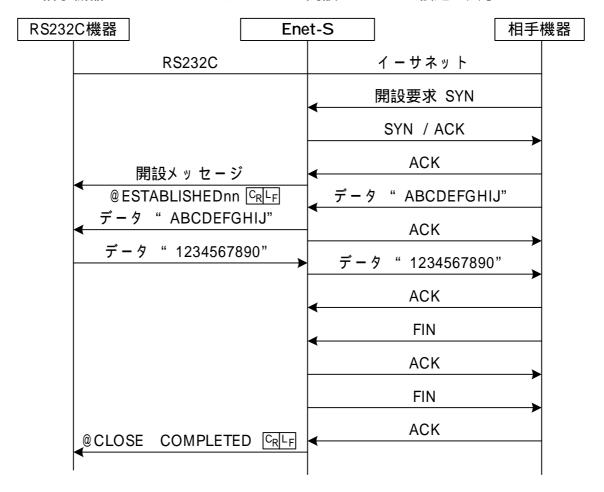
どちらの場合も、終了の場合 メッセージ又は制御線でコネクションの終了を通知して待機状態となります。

Enet-Sは、データ再送タイムアウト時や FIN パケットの再送タイムアウト時に RSTパケットを送出して待機状態となります。


3 - 5 データの伝送

TCP/IPコネクションが開設中は、シリアルチャンネルに受信するコマンド以外は TCP/IPデータパケットとして送出されます。

TCP/IPからのデータパケット 受信は、その<u>データ 部分</u>をシリアルチャンネルに送出します。


データの伝送中になんらかの理由で相互のパケット交換に異常が発生した場合は、 送信元は送信間隔を変えて再送を行います。 再送回数の既定値を越えても正常に 復帰しない場合はRSTパケットを送り強制終了となります。

Enet-Sから TCP/IPコネクションの開設 / データの伝送 / 終了

..............

相手機器から TCP/IPコネクションの開設 / データの伝送 / 終了

3 - 6 ICMP

受信した ICMP ECHO 要求にのみ EHCO 応答を返送します。 ECHO 要求以外の ICMPには対応していません。

3 - 7 UDP

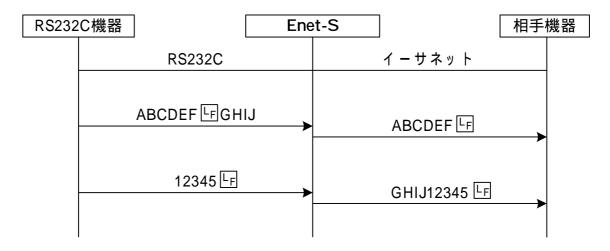
UDPは、TCP/IPのようなプロトコル (受信確認) が無〈、データパケットのみ送受信します。UDP通信開設を指定した時のシリアルチャンネル受信データは、UDPパケットとして相手アドレスを付加してイーサネットに送出されます。自機宛の UDPパケットはデータ部分をシリアルチャンネルに送出します。簡易的な送受信の為、相手が正常に受信したかのチェックは行いません。UDP通信を使う場合にはこれらの特徴をふまえてシステム構築して下さい。

例) アプリケーション側 (ユーザ様作成) にてデータを 受信したらデータとして 受信確認の ACK 等を返送する。

3 - 8 実際のデータ伝送について

TCP/IPあるいはUDPが開設中の時、端末機器は、Enet-Sを介して相手機器との間でデータ伝送が可能な状態となります。

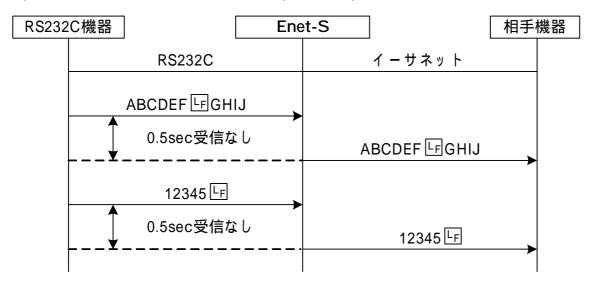
3 - 8 - 1 RS232C 機器 Enet-S イーサネット機器へのデータ 伝送


RS232C機器からのデータは、バイト単位で Enet-Sのシリアルチャンネルが受信します。しかし、Enet-Sからイーサネット機器へ TCP/IP (UDP) でデータを送信するには、パケット単位で送出します。 従って RS232C機器より 受信のバイト単位のデータをパケットとする (ひとまとめ) 方法を Enet-Sに指定する必要があります。

パケットの区切りとして3種類の方法が指定可能です。これらはプログラムモードで設定します。 設定の詳しい方法は [1-5 設定項目の解説]を参照して下さい。 デリミタコードの指定

データ中にデリミタコードに指定したコードを検出した場合は、それまでに受信したデータ列 (デリミタコードを含む)を 1パケットとして伝送します。

デリミタコードの指定は、CR (0Dh)、LF (0Ah)、ETX (03h) 及び DEL= で指定するコード (00h ~ FFh) です。


例)デリミタを LF (0Ah) とした場合 (LF=E)

タイムアウトの指定

タイムアウト値が指定してある場合は、シリアルチャンネルへの受信が一定時間 以上途絶えると、それまでに受信のデータ列を1パケットとして伝送します。

例)タイムアウト値を 0.50とした場合 (TIM=0.50)

この指定は、シリアルチャンネルへの受信データがバイナリデータで可変長のような場合に有効な指定となります。

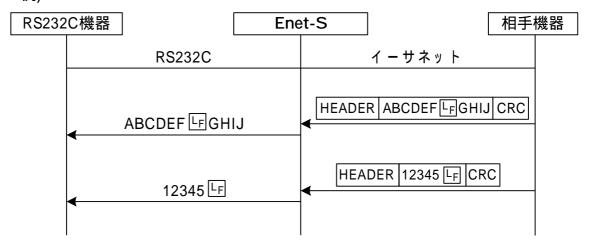
シリアルチャンネルへの受信長が規定を越える場合

TCP/IPでは、1パケットで伝送出来る最大長が規定されています。その値は、通常、1460バイトです。

Enet-Sのシリアルチャンネルへの受信長がこの値になると、デリミタ、タイムアウトの設定に関わらず、1パケットとして伝送します。

相手機器からの受信制限について

相手機器の受信処理が遅れが有る場合は、TCP/IPパケットに制限する情報が入ります。この場合、Enet-Sは、シリアル受信バッファにデータを蓄積します。
[3-9 シリアルチャンネルのフロー制御]も参照して下さい。


ご注意 デリミタ設定、タイムアウト設定、最大パケット 長 1460 バイトの条件は、 ■ ORで機能します。

3 - 8 - 2 イーサネット機器 Enet-S RS232C機器へのデータ伝送

通常の伝送

TCP/IPのデータパケットを受信した場合は、そのデータ部分をシリアルチャンネルに送出します。 デリミタ・タイムアウトに関係な〈、TCP/IPパケットのデータ部分のみが送出されます。

例)

フロー制御

フロー制御で RS232C 機器への送信が停止の場合、Enet-S は、シリアルチャンネル送信バッファにデータを蓄積します。バッファフルとなると TCP/IPパケットに制限情報を出力します。 もし、シリアルチャンネルの送信停止状態が続き、かつ相手機器からの受信が多いと、TCP/IPの再送オーバが発生してコネクションが切断される事があります。

[3-9 シリアルチャンネルのフロー制御1も参照して下さい。

3-8-3 開設中のコマンド及びリザルト

シリアルチャンネルに受信するデータ列が、コマンドと一致する場合は、それまで の受信データを無効としてそのコマンドの指示する処理を行います。

その状態に応じてリザルトを返します。終了コマンド (@QUIT ဩ日) の場合は、正規の TCP/IP 終了手順でコネクションを終了します。

3 - 8 - 4 TCP/IPコネクション開設、データ伝送、

コネクション終了までの例

プログラムモード内で以下のような設定が行われている場合の例

LF=E

TIM = 0.50

COM=@

RMSG=E

IP=192.168.0.10

PORT=A10C

12I=192.168.0.20

12P=B001 (相手機器の IP,PORTが対応している事)

3 - 9 シリアルチャンネルのフロー制御

Enet-S は、シリアルチャンネルに入力 10K バイト、出力 10K バイトのバッファを持ちます。

このバッファを利用して異なる通信手順の同期を取ります。 プログラムモードでの設定により3種類のフロー制御が行えます。 設定方法は、[1-5 設定項目の説明]を参照して下さい。

3 - 9 - 1 XON/XOFF フロー制御

1) 設定無効 (XON=D) の場合

XON (11h)、XOFF (13h) コードは、データとして扱われます。 Enet-S が制御のために XON、XOFFコードを出力することも有りません。イーサネットへの送信が停止された後も入力が続き、入力バッファがフルとなった場合は古いデータに上書きされます。

2) 設定有効 (XON=E) の場合

Enet-Sから 端末機器へデータ 送信の場合の制御 端末機器から XOFF (13h) コードを受信すると、データ 送信を停止します。 端末機器から XON (11h) コードを受信すると、データ 送信を再開します。 イーサネットへの送信が停止され、入力バッファに蓄積した場合 入力バッファの残りが 2K バイト程になると XOFF (13h) コードを送出して端末機器に送信停止を知らせます。イーサネットへの送信が再開され、入力バッファの残りが 4K バイト程になると XON (11h) コードを送出して端末機器へ再開可能を知らせます。

3 - 9 - 2 RTS/CTSフロー制御

RTS/CTSは、有効/無効を設定可能です。

1) 設定無効 (RTS=D) の場合

RTS出力は常にレディ (Hi) です。

CTS入力に関係なくシリアルチャンネルへ送出します。

イーサネットの送信が停止された後も入力が続き、入力バッファがフルとなった場合は、古いデータに上書きされます。

2) 設定有効 (RTS=E) の場合

Enet-Sから端末機器へデータ送信の場合の制御

CTS 入力がビジー (Low) を検出すると、データ 送信を停止します。

CTS 入力がレディ (Hi) を検出すると、データ 送信を再開します。

イーサネットへの送信が停止され、入力バッファに蓄積した場合

入力バッファの残りが 2K バイト程度になると RTSをビジー(Low)として、端末機器に送信停止を知らせます。イーサネットへの送信が再開され、入力バッファの残りが 4k バイト程度になると、RTSをレディ (Hi) にして、端末機器へ再開可能を知らせます。

3 - 9 - 3 DTR/DSR フロー制御

DTR/DSR は、有効 / 無効を設定可能です。

1) 設定無効 (DTR=D) の場合

DTR 出力は常にレディ (Hi) です。DSR 入力に関係なくシリアルチャンネルへ送出します。イーサネットへの送信が停止された後も入力が続き、入力バッファがフルとなった場合は古いデータに上書きされます。

2) 設定有効 (DTR=E) の場合

Enet-Sから端末機器へデータ送信の場合の制御

DSR 入力がビジー (Low) を 検出すると、データ 送信を 停止します。 DSR 入力が レディ (Hi) を 検出すると、データ 送信を 再開します。

イーサネットへの送信が停止され、入力バッファに蓄積した場合

入力バッファの残りが 2Kバイト 程度になると DTRをビジー (Low)として、端末機器に送信停止を知らせます。イーサネットへの送信が再開され、入力バッファの残りが 4Kバイト 程度になると DTRをレディ (Hi)にして、端末機器へ再開可能を知らせます。

第4章 コマンドとリザルト

4 - 1 コマンドとリザルトのフォーマット

コマンドは次のフォーマットです。

コマンドプロンプト文字列+コマンド文字列 (+ テーブル番号) 🖫

例)@OPEN12 🖫 (テーブル 12番と TCP/IP 開設する)

コマンドプロンプト文字列

プログラムモードの COM=で設定変更可能な文字列です。

デフォルトは、@ (40h) 1 文字です。

データとの識別の為に付加します。

コマンド文字列

Enet-Sに指示を与えるコマンドです。

テーブル番号

フラッシュ ROMに設定出来る 18個のうち、対象となる相手機器のテーブル番号を指定します。一部のコマンドに必要です。番号は 1 ~ 18の数値です。 (1 ~ 9番では 01 等でも可)

$C_R L_F$

コマンドのデリミタです。

4 - 1 - 2 リザルトフォーマット

リザルトは、次のフォーマットです。

コマンドプロンプト文字列 + リザルト文字列 (+テーブル番号) 🖫

例) @ TIME WAIT12 🖫 (テーブル 12番の相手機器とタイムウェイトになった)

コマンドプロンプト 文字列

プログラムモードの COM=で設定変更可能な文字列です。

デフォルトは、@ (40h) 1 文字です。

データとの識別の為に付加します。

リザルト文字列

コマンド実行の結果、発生した状況を返します。

テーブル番号

対象となる相手のテーブル番号となります。

一部のリザルトに付加されます。

番号は、01~18の数値です。(2桁となる)

$C_R L_F$

リザルトのデリミタです。

回 (キャリッジリターン: ODh)と回 (ラインフィード: OAh) が最後に付きます。

4-1-3 コマンド、リザルト無効

コマンド無効

プログラムモードで COM= 回日 とするとコマンド無効となります。

この場合、全てのコマンドが無効となり、データとして扱われます。

コマンドでのコネクションの開設、終了も出来なくなります。

自動開設または制御線による開設以外は相手からの開設要求待ちとなります。

リザルト無効

プログラムモードでRMSG=D 回日とするとリザルトがRS232C機器へ送出されなくなります。

4 - 2 コマンド、リザルト一覧

4 - 2 - 1 コマンド一覧

コマンド	意味	項番
@ OPENnn	テーブルnn番と TCP /IP開設する	4 - 3 - 1
@ UDPnn	テーブルnn番と UDP開設する	4 - 3 - 2
@ QUIT	TCP/IPあるいはUDPを終了する	4 - 3 - 3
@ STAT	状態を調べる	4 - 3 - 4
@ PROG	プログラムモードに入る	4 - 3 - 5
@ TESTnn	テーブルnn番にテストを実行する	4 - 3 - 6
@ DMAC	テーブル1~18の 取得済み相手MAC アドレスの一時削除	4 - 3 - 7
@RVER	Enet-SのROMバージョンを調べます。	4 -3 -8

コマンドプロンプト文字は、@で表しています。

テーブル番号付きは、番号部分をnnで表しています。

4 - 2 - 2 リザルト一覧

リ ザルト	意味	関連項番
@ESTABLISHEDnn [짂다	テーブルnn番と TCP /IP開設成立	4 - 3 - 1,4 - 4 - 1
@OPENINGnn CRLF	テーブルnn番と TCP /IP開設中	4 - 3 - 1
@OPEN ERROR जि्म	設定条件不足による 開設失敗	4 - 3 - 1
@COULD NOT CONNECT जि़्म	RST受信による 開設失敗	4 - 3 - 1
@WAITING 때다	処理パケット 再送	4 - 3 - 1,4 - 3 - 3
@TIMEOVER CRLF	相手応答無しでの開設失敗	4 - 3 - 1
@TIME WAITnn [유니	タイムウェイト 状態となった	4 - 3 - 3
@CLOSE COMPLETED ত্রেদ্	完全に未開設状態	4 - 3 - 3,4 - 4 - 6
@CONNECTION RESET [RLF	RSTを 受信して 終了した	4 - 4 - 3
@CONNECTION TIMEOUT व्यिप्	RSTを 発行して 終了した	4 - 3 - 3,4 - 4 - 2
@ TIME OUT ARP 때다	ARPプロードキャスト発行に応答無し	4 - 3 - 1,4 - 3 - 2
@UDP ONnn 때다	テーブルnn番と UDPを 開設した	4 - 3 - 2
@UDP OFF 际다	UDPを終了した	4 -3 - 3
@TELNET Login CRLF	TELNET Login 中の為 実行できない	4 - 3 - 5,4 - 3 - 6 4 - 3 - 7

コマンドプロンプト文字は、@で表しています。

テーブル番号付きは、番号部分をnnで表しています。 はスペースです。

4 - 3 各コマンドの説明

ここでは、コマンドプロンプト文字をデフォルトの、@ で説明しています。 変更した場合は、@ を読み変えて下さい。 テーブル番号付きは、番号部分をすべてnnで表しています。

4 - 3 - 1 テーブル nn 番と TCP/IP 開設をする。

@ OPENnn 🖫 (nn は開設する相手のテーブル番号)

正常動作の場合

SYNパケットを発行して開設手順を実行します。通常は、直ちに相手が応答して開設が成立します。

@ESTABLISHEDnn 🖫 を返します。

LED CONNECTが緑で点灯し、データ伝送可能状態となります。

相手イーサネットアドレスが不明の場合

ARPブロードキャストを発行して取得してから正常時の動作となります。

ARP応答が無い場合は、@TIME OUT ARP 回日を返して失敗を知らせます。 相手が応答しない場合

SYNパケットを再送します。 (5 秒間隔に 4 回) この時、シリアルチャンネルに @WAITING ဩ日 を返し、処理中で有ることを知らせます。

再送回数が終了後、30 秒間応答待ちをします。30 秒経過後 (合計 50 秒後)、更に無応答の場合は、@TIMEOVER 🖘 を返し、失敗を知らせます。

開設が失敗すると、既に取得していた相手機器イーサネットアドレスを消去します。従って、次からは ARPが必要となります。

この機能は、相手機器のハード交換の際に有意義となります。

必要な設定が不足の場合

@OPEN ERROR [SQLF] を返して失敗を知らせます。

必要な条件は、IP、PORT、nnl、nnPです。確認して下さい。

開設中の場合

TCP/IPが開設中の場合は、@OPENINGnn 回上を返し、どの相手と開設中かを知らせます。

UDPで開設中の場合は、@UDP ONnn 🖫 を返し、どの相手と開設中かを知らせます。

リザルトの nn 部が指示したテーブルと異なる場合は、本来の相手機器とは違いますので注意が必要です。

4 - 3 - 2 テーブル nn 番と UDP 開設をする

@ U D P n n 🖫 (nn は開設する相手のテーブル番号)

正常動作の場合

@UDP ONnn 日 を返し、開設された事を知らせます。

LED CONNECTが緑で点灯します。

相手イーサネットアドレスが不明の場合

ARPブロードキャストを発行して取得してから正常時の動作となります。

ARP 応答が無い場合は、@ TIME OUT ARP 🖫 を返して失敗を知らせます。

必要な設定が不足の場合

@OPEN ERROR 回上を返して失敗を知らせます。

必要な条件は、IP、PORT、nnl、nnPです。確認して下さい。

開設中の場合

TCP/IPが開設中の場合は、@OPENINGnn 😡 を返し、どの相手と開設中かを知らせます。

UDPで開設中の場合は、@UDP ONnn 回上を返し、どの相手と開設中かを知らせます。

リザルトの nn 部が指示したテーブルと異なる場合は、本来の相手機器とは違いますので注意が必要です。

4 - 3 - 3 TCP/IPあるいは UDPを終了する

@QUIT 际다

TCP/IPの正常終了

FINパケットを発行して終了手順を開始します。

通常は直ちに相手が応答して終了します。

@TIME WAITnn 🖫 を返して、タイムウェイト中を知らせます。

LED CONNECTが消灯します。

タイムウェイトの設定時間 (デフォルト: 120 秒) の経過を待ちます。

@CLOSE COMPLETED 回回を返してタイムウェイトの終了を知らせます。

相手機器から開設を行った場合でも、終了が出来ます。

FINに対して相手の応答が無い場合

間隔時間を変えて FIN を再送します。この時 @WAITING 図上 を送り、処理中を知らせます。

再送終了で RSTパケットを発行して強制終了します。

@CONNECTION TIMEOUT 🖫 を送り、強制終了を知らせます。

LED CONNECTが消灯します。

UDPの終了

@UDP OFF を返して、終了を知らせます。

LED CONNECTが消灯します。

4 - 3 - 4 状態を調べる

@STAT 隔归

このコマンドに対して Enet-Sの状態をリザルトとして返します。

リザルト	意味		
@CLOSING 때다	開設無し (タイムウェイトではない)		
@ OPENINGnn 덖다	テーブルnn番と TCP /IP開設中		
@UDP ONnn CRLF	テーブルnn番と UDP開設中		
@TIME WAITnn 🖫 🗐	テーブルnn番とのタイムウェイト中		
@WAITING CRLF	OPEN、QUIT等の処理中		

4 - 3 - 5 プログラムモードに入る

@ PROG [유니

プログラムモードとなります。

プログラムモードの通信条件はこのコマンド実行時と同じです。

詳細は[第1章 通信を行う前の準備]の通信条件の設定を参照して下さい。

TELNET Login 中はプログラムモードへ入ることが出来ません。

4 - 3 - 6 設定した相手機器に対して通信テストを実行する

@TESTnn 💁

テスト動作

テーブル nn 番に対して ICMPエコーパケットを発行して相手からのエコーを チェックします。

この間、LED CONNECTと PACKETがオレンジで点滅します。

20回の ICMPの結果をリザルトで返します。

@ ECHO OK 😡 20 回とも正常

@ECHO ERROR 🖫 1 回以上エラーが発生した

@NO ECHO 역년 1回も応答が無い

@TIME OUT ARP 😡 G ARP 応答がない

@OPEN ERROR 🖫 必要な設定が無い

@OPENINGnn 🖫 TCP/IP開設中に付き、テストは行わない

@UDP ONnn 🖫 UDP 開設中に付き、テストは行わない

応答が無い場合は接続、各種設定値、サブネット関連設定等を確認して下さい。

TELNET Login 中は実行出来ません。

4 - 3 - 7 取得相手 MAC の一時削除

@DMAC Skip

相手テーブル 1 ~ 18 に 取得済みの相手 MAC すべてを 一時削除します。 電源を 再投入すると、 取得済み MAC が復帰します。

このコマンド発行後に@OPENnn 回回コマンドを発行すると、ARPを行ない、相手MACを再取得後に開設要求のSYNを送信します。

TELNET Login 中は実行出来ません。

4 - 3 - 8 ROM バ - ジョンの表示

@RVER SILF

このコマンドに対して Enet-Sの ROM バージョンをリザルトとして返送します。

4 - 4 コマンド以外の原因による事象

4 - 4 - 1 相手機器からの SYN パケットの 受信

開設中でなく IP、ポートの条件が一致した場合、SYN 手順で開設を行います。 この場合、テーブル番号のどの相手機器からでも受付は可能です。

@ESTABLISHEDnn 🖫 でどの相手からの開設かを知らせます。 LED CONNECTが点灯し、データ伝送可能となります。

4 - 4 - 2 Enet-Sから TCP/IPへの伝送が不可能な場合

再送間隔時間を変えてデータパケットを再送します。

再送終了 (約12分) で RST (リセットパケット) を 発行して TCP/IPコネクションを 強制終了します。

@CONNECTION TIMEOUT 🖫 を送り、強制終了を知らせます。 LED CONNECTが消灯します。

4 - 4 - 3 相手機器から RST (リセットパケット) を受信した場合

@CONNECTION REST 🖫 を送り TCP/IPコネクションは強制終了となります。 LED CONNECTが消灯します。

この様な事象の発生原因

半開設(以前開設した一方が開設状態のままで反対側が終了状態)であった。シリアルチャンネルのフロー制御の影響により、相手機器からのデータパケットが再送回数を越えても受信出来ない為、強制切断された。

4 - 4 - 4 ARP ブロードキャストを 受信した 場合

自機宛の場合は、自動的に応答を行い取得した相手イーサネットアドレスを合致する相手IPアドレスに付加してフラッシュROMに記憶します。この際、リザルトを返す事はありません。(全て自動で処理します。)

また、合致する相手IPが登録されていない場合は応答のみとなります。

4 - 4 - 5 ICMPパケットの受信

ICMPエコーパケットの場合 自動的にエコーパケットで応答します。 この際、リザルトを返すことは有りません。(全て自動で処理されます)

4 - 4 - 6 相手機器より FIN (切断要求パケット) を 受信した 場合

TCP/IP 開設中、FIN パケットを受信するとコネクション開設を終了します。
@ CLOSE COMPLETED 🖫 を送り、LED CONNECT が消灯します。

第5章 使用例

5 - 1 Enet-Sをシステムに組み込む為の手順

以下の基本的手順を、それぞれの状況を加味してご検討下さい。

どのようなイーサネットに接続するか確認します。

回線仕様、ハード、コネクタ、相手機器の仕様、ソケット通信、サブネットの有無

゙シリアルチャンネルの通信条件の決定 データに使用されるコードを検討し、デリミタを決定します。 (プログラムモード CR=,LF=,ETX=,DEL=,TIM=の各項目のいずれかを指定)

システム管理者に自機Pアドレスを割り当ててもらい、相手機器IPの情報を得ます。他のサブネットとの接続の場合は、サブネットマスク、デフォルトゲートウェイ、サブネットブロードキャストアドレスの情報も得ます。

取得した情報を元に、プログラムモードで必要条件を設定します。

必ず設定が必要な項目

RS232C関連:通信条件、デリミタ

イーサネット 関連:自機IP、自機PORT (プログラムモード2/3Page IP=,PORT=) 相手IP、相手PORT (プログラムモード3/3Page nl=,nP=nは相手TABLE No)

場合により設定が必要な項目 RS232C関連:フロー制御有無

イーサネット 関連: サブネット 関連アドレス (プログラムモード2/3Page)

NETM=,DEFG=,BRDA=)

プログラムモードを終了します。

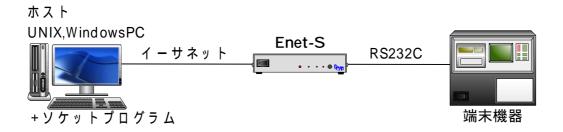
パソコンとターミナルソフトを用意します。

パソコンと Enet-Sを RS232Cケーブルで接続し、ターミナルソフトを起動します。

相手機器のソケットプログラムがホスト型の場合またはEnetシリーズの場合 ターミナルソフトより@OPENnn CRLF コマンドを実行してコネクション開設を 行います。

相手機器のソケットプログラムがクライアント型の場合 ソケットプログラムより Enet-Sに対してコネクション 開設を行います。

正しく 開設の場合双方からデータ送信可能であるかを確認します。


開設できない場合 Enet-Sの設定値、ネット環境、 ソケット側プログラムの確認

実際に運用の機器接続構成/アプリケーションで動作確認

5 - 2 使用例

5-2-1 ホストワークステーション等との接続

ホストには、ソケット通信のアプリケーションプログラムが必要になります。 Enet-Sがサポートしている手順、ホストマシンがサポートしている手順を組み合わせて構築して下さい。

Enet-Sには、自機 IP/PORTの設定 (IP=,PORT=) 及びホストマシンの IP/PORT (nnl=,nnP=)の設定が必要です。

ホストから開設の場合でも、nnP=hhhhを適当な値で必ず設定します。

ホスト側から TCP/IPコネクションの開設 / 切断が可能です。

ホストからの開設要求に応答して TCP/IPコネクションを開設します。

開設成功時には、シリアルチャンネル側にリザルトまたは制御線にて成功を通知します。 開設中は双方向のデータ 転送が可能です。

ホストからの切断要求に応答して TCP/IPコネクションを切断します。

切断時には、シリアルチャンネル側にリザルトまたは制御線にて切断を通知します。 切断後は、データ 転送は行われません。

ホスト側ソケットには、Enet-Sの IP= / PORT= で指定の値を設定する必要があります。 また、ホスト側自身の IPアドレスも必要です。

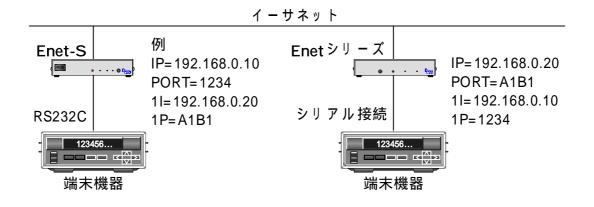
Enet-S 側から TCP/IPコネクションの開設 / 切断が可能です。

シリアルチャンネルへの OPENコマンドもしく は制御線 Hiにより、開設要求を出力します。 開設応答受信によりリザルトまたは制御線にて成功を通知します。

開設中は双方向のデータ転送が可能です。

切断は、シリアルチャンネルへのQUITコマンドもしくは制御線のLowにより、切断要求を出力します。 切断応答の受信によりタイムウエイト 状態となります。

ウェイト時間のデフォルトは、WAIT=120(秒)です。


ウエイト時間経過後、リザルトまたは制御線にて切断を通知します。

切断後は、データ伝送は行われません。

5 - 2 - 2 **Enet** シリーズ同士の通信

イーサネットを利用した [弊社 Enet シリーズ] 同士の通信も行えます。イーサネットを介して接続することで距離の延長、敷線費用の削減 (既存配線の利用、他のシステムとの共用) が可能です。

双方にIP、ポートの設定が必要です。

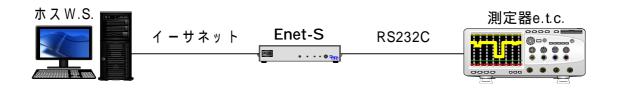
5 - 2 - 3 測定器、バーコードリーダ等の接続

コマンド発行、応答の出来ない測定器等のデータをホストワークステーションで 収集するシステムに使用できます。

Enet-Sに 必要な条件を 設定する。

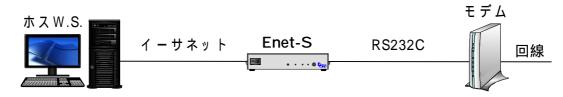
システム組み込み前にプログラムモードで必要な条件を設定します。

~ 自機IP,PORT及び相手機器IP,PORT


コマンドは無効とします。 COM= CRLF

リザルトも無効とします。 RMSG=D [CRILF]

Enet-S側からコネクション開設を行う場合は、


PW=nnX [CR]LF (自動開設) またはDTR=O [CR]LF (制御信号による開設:接続機器がコントロール可能な場合)の設定を行います。

(プログラムモードを終了してEnet-Sをシステムに組み込みます。

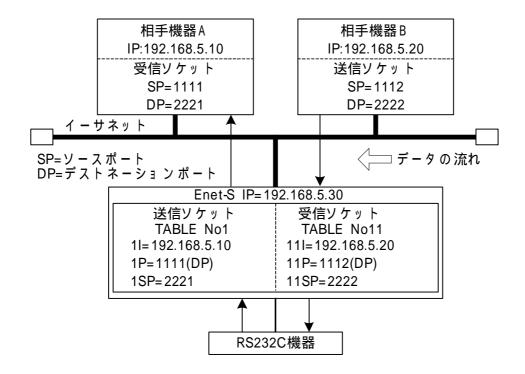
5 - 2 - 4 モデムの接続

イーサネットとモデムとの接続に Enet-Sを使用します。 Enet-Sには、モデムと接続して利用する際に有効な機能があります。 双方の IP、ポートを設定します。

CD=nn 🖫 を設定する

プログラムモードで CD=nn [Q]」 (nn はテーブル番号) を設定しておくと、モデムに着呼した場合の CDオン信号で、指定の相手機器と TCP/IPの開設を行います。また、モデム側が切断した場合の CDオフで TCP/IPも終了します。これによって、モデムと TCP/IPを連動した開設が可能となります。

ご注意


PW=nnUもしくは nnTの設定を行っている場合、この設定が優先されるため、CD=nn は設定出来ません。CD=nn の設定を行う場合は、PW=0Tもしくは 0U の設定なしとしてください。

設定方法は、[4-4 設定項目の説明]を参照して下さい。

5 - 2 - 5 マルチポートでの使用

マルチポートモードを指定すると Enet-Sのソースポート No が 2 つ指定可能となります。

ホストのアプリケーションが送受信で別のポートを使用したい様な場合に利用します。 別々のソースポートNoの指定を行う事により以下のような通信が可能となります。

..............

マルチポートモードの指定と設定

プログラムモード 2/3ページの指定で M=Eと すると マルチポートモードと なりプログラムモード 設定値のリザルト 返送が以下となります。

*** PROGRAM 2/3 ***

MAC=00:C0:84:06:00:00 ETHERNET ADDRESS

IP=192.168.0.10 IP ADDRESS

PORT= ---- SOURCE PORT NUMBER

NETM= 0.0.0.0 NETMASK

DEFG= 0.0.0.0 DEFAULTGATEWAY
BRDA= 255.255.255.255 BROADCASTADDRESS

WAIT= 120 TIME WAIT (sec)
USER= FTP USER NAME

PASS= Enet-R FTP or TELNET PASS WORD

OBSP= 0000 OBSERVATION UDP PORT NUMBER

PW= --- POWER ON CONNECT

PWCT= 10 POWER ON CONNECT RETRY COUNTER [0:INFINITY]

PWTM= 60 POWER ON CONNECT RETRY TIMER [30-1200 Sec]

DCT= 0 DISCONNECTED RETRY COUNTER [999:INFINITY]

DTM= 60 DISCONNECTED RETRY TIMER [30-1200 Sec]

TRY=N RETRY COUNTER [N/S]

WTM= 0 KEEP WATCH TIMER [0-60 Min]

M=E MULTI PORT [E/D]

HEAD=D UDP TABLE HEADER [E/D]

PORT= 及び PW= の指定が無効となり表示されません。

PORT (ソースポート) と PW (パワ・オンコネクト) の指定は新たに 3/3ページで設定します。

*** PROGRAM 3/3 ***

HOST IP ADDRESS DEST PORT HOST ETHERNET ADDRESS SOURCE PORT POWER ON E-R 1I=0.0.0.0 1P=0000 1M=00:00:00:00:00 1SP=0000 1PW=D

11I=0.0.0.0 11P=0000 11M=00:00:00:00:00 11SP=0000 11PW=D

通信相手テーブルの対象が No1と No11に限定されます。

この通信相手以外に指定の相手とは通信出来なくなります。

1I=,1P=には、RS232Cから受信したデータを送信したい相手を指定します。

1SP= に Enet-S のソースポート No を指定します。 指定の方法は PORT= と 同様です。

上記により No1 のテーブルに指定した相手に対してイーサネットデータを送信します。

送信専用のポートとなります。

(通信相手イーサネット機器が誤ってイーサネットデータをこのポートへ送信した 場合、通信維持の為に受信データをシリアルチャンネルへ送信します。) 11I=.11P= には、イーサネットよりデータを受信する相手を指定します。

11SP=に Enet-Sのソースポート Noを指定します。

上記により No11 のテーブルに指定された相手よりのイーサネットデータを受信して RS232C へ送信します。

受信専用のポートとなります。

PW ON CONNECT (電源投入時 / 再起動時の動作) の機能を使用する場合は、それぞれのテーブル毎に可能です。

1PW=E 回归 (PW ON CONNECT TCP/IPモードで実行)

1PW=D 🖫 (PW ON CONNECT機能を使用しない)

1PW=U 回に (UDPモードで起動する)

E-Rの所は、それぞれイーサ、RS232Cの略です。

相手テーブルの IP,PORTが設定されるとデータの向きを矢印で表します。 入力は出来ません。

表示例

*** PROGRAM 3/3 ***

 HOSTIP ADDRESS
 DEST PORT
 HOSTETHERNET ADDRESS
 SOURCE PORT
 POWER ON
 E-R

 1I=192.168.10.10
 1P=1234
 1M=00:00:00:00:00:00
 1SP=5678
 1PW=D

 11I=192.168.10.20
 11P=ABCD
 11M=00:00:00:00:00
 11SP=EFAB
 11PW=D

コマンド

マルチポート動作時にコマンドによる開設等を行う場合は、以下となります。

- @ OPEN1 [Q] または @ OPEN11 [Q] 指定テーブルの相手と TCP/IPコネクション 開設を行う。
- @UDP1 😡 または@UDP11 😡 日 指定テーブルの相手と UDPモードでの通信を行う。
- @QUIT1 🖫 または @QUIT11 🖫 指定テーブルの相手との TCP/IPコネクションまた は UDPを終了します。

コマンドに対するリザルト

マルチモード時はそれぞれ別の遷移で動作している為、コマンドに対するリザルトが対応テーブル毎に返送されます。

シリアルバッファの扱い

テーブル No.1 の相手と 通信可能状態でない場合に RS232C へ受信のデータ は破棄または ECHO されます。

第6章 物理的仕樣

6 - 1 ハード構成、仕様

RS232C 部

通	信		速		度	300,600,1200,2400,4800,9600,19200,38400 76800,153600,14400,28800,57600,115200,230400	
デ	-		g		長	7,8	
ス	トッ	プ	Ľ	ッ	۲	1,2	
パ	IJ		テ		1	無し、EVEN、ODD	
フ		-	ŕ	制	御	XON /XOFF、RS T/CTS、DTR /DSR	
バ	ッフ	7	Х	Ŧ	IJ	入力10kバイト、出力10kバイト	
⊐	ネ		ク		タ	Dsub9ピンオス (DTE配列)	

ハード 構成

CPU / LAN / メ モ リ	ARM@cortexTM-M3	(テキサスインスツルメンツ)
シリアルコネクタ	Dsub9ピンオス	(DTE配列)
RS232Cトランシーバ	MAX2321	(マキシム) 相当
イーサネットコネクタ	10 /100Baseコネクタ	(RJ45モジュラコネクタ)

6-2 使用環境、消費電流

【 Enet-S 本体】

動作条件 温度 0~50

湿度 30~80%(但し結露なきこと)

保存条件 温度 -30 ~ 50

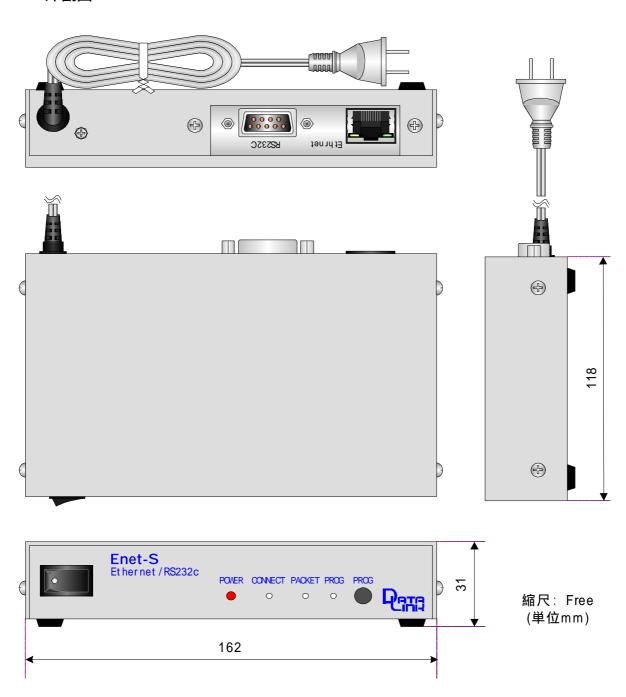
入力電圧範囲 AC 85V ~ 264V (50 / 60Hz)

消費電流 100V 最大約 25mA (2W)

AV125V以上でご使用の場合は、本体プラグを対応する電圧形状のものに交換してください。 本機で使われているプラグは、AC125Vまでの対応となっております。

6 - 3 形状、重量

[Enet-S]


寸法 幅 162mm (ネジ頭除()

高さ 31mm (クッションラバー含む)

奥行 118mm (コネクタ 突起部除()

重量 約 590g

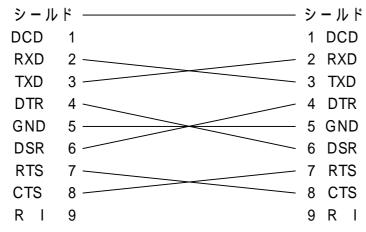
外観図

【 DIN レ - ル取付金具穴位置寸法図】

6 - 4 RS232C ピンアサイン

Enet-SのRS232CチャンネルのDsub9ピンは、DTE配列です。パソコン等のDTE配列の端末機器と接続する場合は、クロスケーブルとなります。モデム等のDCE配列の端末機器と接続する場合は、ストレートケーブルとなります。

ピン番号	信号名	方向	説明	
1	DCD		キャリア検出	
2	RXD		受信データ	
3	TXD		送信データ	
4	DTR		データターミ ナルレディ	
5	GND	-	グランド	
6	DSR		データセットレディ	
7	RTS		送信要求	
8	CTS		送信可能	
9	R I		リング	


方向 Enet-S からの出力信号 Enet-S への入力信号

Enet-Sでは、9番RI入力は意味を持ちません。

6 - 5 RS232C 機器接続例

RS232C 接続例 1

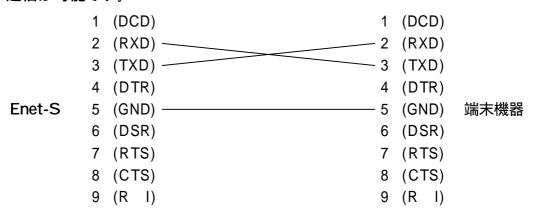
クロスケーブル (標準添付)を使用して DOSNパソコン 等と接続する場合

1番と9番は未接続です。

RS232C 接続例 2

ストレートケーブルを使用してモデム等と接続する場合

	1(DCD) —	1(DCD)	
	2(RXD) —	2(RXD)	
	3(TXD) —	3(TXD)	
	4(DTR) —	4(DTR)	
Enet-S	5(GND) —	5(GND)	端末機器
	6(DSR) —	6(DSR)	
	7(RTS) —	7(RTS)	
	8(CTS) —	8(CTS)	
	9(R I) —	20(R I)	


モデムと接続する場合で、CDを使用する方法については、[1-5-1 各項目の意味、 設定値範囲、デフォルト値] の CD = の項目で説明しています。

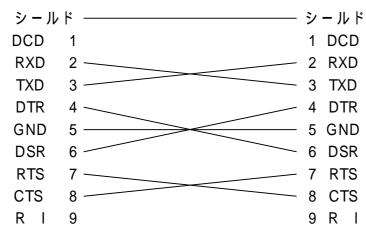
ご注意

接続機器によって、信号名の表現が逆のものがあります。接続機器のピンアサイン (入出力方向)をご確認下さい。

RS232C 接続例3

端末機器 (DTE 機器) がデータ 線のみ使用している 場合、RTS/CTS、DTR/DSR のショートを行わなくても、プログラムモードの設定にて RTS=D、DTR=Dとすれば通信は可能です。

ご注意



Enet-Sは、制御信号を使用して伝送制御 (フロー制御) を行う事が可能です。しかし、高速で大量の通信が行われたり、イーサネット 側通信で何等かの遅延が発生する可能性もあります。 従って、データ 線のみでの接続ではデータの欠落が発生することがあります。

上記結線で、フロー制御を選択しない場合、入力バッファ量を超えるデータが入力された場合、 古いデータから上書きされます。

6 - 6 添付ケーブル 結線図

Dsub9ピンメス - Dsub9ピンメス 1.5mクロスケーブル結線図

1番と9番は未接続です。

6 - 7 RS232C 接続ケーブル 長

RS232C 接続のケーブル長は、なるべく 短いものをご使用ください。 特に、56700bpsを超える通信速度での長いケーブルは、ノイズ等の影響でデータ化 けや欠落が発生する可能性が高まります。

6 - 8 イーサネットコネクタ (RJ45) ピンアサイン

Enet-Sは、イーサネットコネクタとして、10/100Baseを装備しています。

ピン番号	信号名	方向	説明
1	データ出力+		送信線 +
2	データ出力 -		送信線 -
3	デ - タ入力+		受信線 +
4	N C		未接続
5	N C		未接続
6	デ - タ入力 -		受信線 -
7	N C		未接続
8	N C		未接続

方向 Enet-Sからの出力信号 Enet-Sへの入力信号

10or100Base は自動認識です。

第7章 その他

7-1 FAQ(よくある質問について)

- Q. どのようなイーサネット機器と接続実績がありますか?
- A. UNIXマシン、Windowsマシン等との接続実績があります。
- Q. イーサネット側通信相手機器にソケットアプリケーションが必要とありますが、どういう事ですか?
- A. Enetシリーズは、通常TCP/IPプロトコルを使用してイーサネット機器と通信を行います。たとえば、WindowsのPCとEnetが通信を行う場合、Enetシリーズより受信したTCP/IPデータをどのように扱うのか(画面に表示/集計/ファイル書き込み等)または、PCよりどのようなTCP/IPデータをEnetシリーズに送信するのか?等は、ユーザ様システム固有の処理となります。 導入システムに合わせたソケットアプリケーションが必要となります。ソケットアプリケーションはWindows環境であれば、マイクロソフト社のVC++やVB、ボーランド社のDelphi等で作成が可能です。
- Q. ping 応答はありますが、作成した TCP/IPソケット 通信とコネクション 開設が出来ません。
- A. 1. Enet-Sの PORT番号は正しく 設定されていますか?
 Enet-Sでは、TCP/IPソケットと通信するには、プログラムモード内で自機 IP、PORT (ソースポート番号) と相手 IP、PORT (デストネーションポート番号) が必要です。これらをご確認下さい。 また、PORT番号はデフォルトで 0000 (Hex) となっており、0000 (Hex) のままでは未設定の扱いとなります。

TCP/IPソケット側よりコネクション開設 (クライアント型) を行う場合、Enet-Sの相手 PORT (デストネーションポート番号) には仮の値を設定して下さい。相手よりの開設要求パケットの相手 PORT Noより 自動取得します。

2. PORT番号の設定方法を確認して下さい。

Enet-Sでは PORT番号の指定は全て 16 進表記で行います。一方、ソケットプログラムで相手ポート番号を指定する場合は、10 進表記をご使用されているケースがよくあります。従って Enet-Sのソースポート Noを '1000' (16進)と指定した場合、ソケットプログラム内での 10 進数表記による開設要求先である Enet-Sのポート No は 4096 (10 進) とする必要があります。

- Q. Enet シリーズはクライアントまたはホストどちらの動作も可能なのですか?
- A. どちらも可能です。基本的に以下のような動作となります。
 - 1. 通信条件設定モード (プログラムモード) にて通信相手のIPアドレスを設定します。通信相手は最大18件まで登録可能。上記で設定の通信相手IPよりTCP/IPコネクション開設要求があった場合、ホストの動作となります。
 - 2. Enet側よりコネクション開設を行う場合は、クライアント動作となります。 コネクションを開設するには、例えば Enet-Sであれば"@OPENnn [All-F]" という開設コマンドを RS232Cより 受信すると nn番目のテーブルに設定された相手 IPへ接続を行います。
- Q. TCP/IPソケットプログラムから Enet-Sに TCPコネクション 開設、データを送信してコネクションを終了後、再びコネクションを開設しようとしましたがうまく 行きませんでした。 何故でしょう か?
- A. 上記のケースの場合、ソケットプログラム側よりコネクション開設 / 終了をして います。

この場合、ソケット側がクライアント型となります。 この場合、同じ相手 (IP/PORT) に対しての接続には2分間の待ち時間が必要であるというプロトコル上の決まりがあります。

待ち時間を無くすには、ご使用のマシン環境やプログラム環境での対応が必要となります。メーカーにお問い合わせ下さい。 尚、Enet-S側よりコネクション開設 / 終了を行った場合も同様の動作となります。待ち時間を変えるには、プログラムモード内 2/3ページの WAIT = 120 (単位秒) の設定を変更します。値の変更はユーザ様の責任において実行して下さい。

- Q. プログラムモードでコマンド 有効 COM=@ としていますがコマンドが効きません。
- A. コマンド例 @ PROG の後に 国 がありますか? これがないとコマンドとして 認識されません。

コマンドを送出の機器の RS232C 通信条件 (ボーレート) と Enet-S に設定の通信条件はあっていますか?

プログラムモードでデリミタタイムアウトの項目が TIM=0.01 等の短い時間で設定されていませんか?

コマンドをターミナルソフト等で手入力の場合、全てのコマンド文字を送信しないうちにタイムアウトとなりコマンドとして解釈されません。

7-2 付録、用語解説

ACK No

Acknowledgment Numberの略でTCPプロトコルにて受信パケットをどこまで処理したかを示すものです。

ARP

AddressResolutionProtocolの略でIPアドレスからハードウェアアドレスを得る為のプロトコルです。

FTP

FileTransferProtocolの略で、機器間でのファイル転送を実現するプロトコルです。

ICMP

Internetwork Control Message Protocolの略でIPネットワーク上に発生したエラー等さまざまな情報をやりとりするプロトコル。

IPアドレス

IPアドレスは、OSI7 層モデルのネットワーク 層において機器を識別する番号です。

ネットワークに接続する場合に、他の機器と異なるIPアドレスが設定されていなくてはなりません。もし、同じIPアドレスが同一ネットワーク内に存在すると、正常な LAN を構築する事が出来ません。 Enet-SにIPアドレスを設定する際には、システム管理者等にご相談の上、正しいIPアドレスを設定する必要があります。IPアドレスは32ビット長(4バイト)で示されます。 通常8ビット(1バイト)単位をドットで区切り、各8ビットを10進数で表示します。

MACアドレス

機器固有のハードウェアアドレスです。 データリンク 層で定義される物理アドレス。イーサネットアドレスとも言われます。 [Enetシリーズ] は、IEEEより 個別の MACアドレスが割り当てられ、1台1台異なるアドレスを出荷時に設定してあります。これはハード個別の固有値ですから変更出来ません。

00: C0: 84: hh: hh: hh 割当部分 個々の番号

イーサネットアドレスは、48ビット長(6バイト)で示されます。

通常 8 ビット (1 バイト) 単位をコロンで区切り、 各 8 ビットを 16 進数で示します。

PORT 番号

送信元、宛先を識別する為の番号です。

ポート番号は、16ビット長(2バイト)で示されます。

送信元ポート番号を SourcePort

宛先ポート番号を DestinationPort番号と呼びます。

ポート 番号の0~1024 (400H) まではウェルノンポートとして 予約されています。 ソケット 等で使用する 場合は、上記以外で使用されていな番号を使用します。

SEQ No

Sequence Numberの略で、TCPプロトコルにてデータ全体におけるそのパケットのセグメント位置をしめす。

TELNET

TELNETは、ネットワークを介してリモート端末を接続する為のプロトコルです。

7-3 ユーザサポートのご案内

ご購入頂きました Enet-Sに関するご質問・ご相談は、弊社ユーザサポート課までお問い合わせ下さい。

データリンク 株式会社 ユーザサポート 課

TEL 04 - 2924 - 3841(代)

FAX 04 - 2924 - 3791

受付時間 月曜~金曜(祝祭日は除く)

AM9:00 ~ 12:00 PM1:00 ~ 5:00

E-mail support@data-link.co.jp

7 - 4 ファームウェアの更新

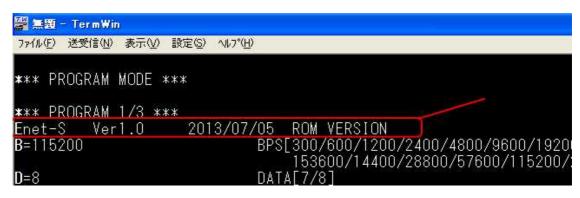
Enet-Sはフラッシュ ROMを搭載しており、最新のファームウェアへの書き換えが可能です。ファームウェアの書き換えは、RS232Cを使用して行います。

ご注意 ファームウェアの更新は、以降の手順通り正しく行なって下さい。

手順以外の作業や、書込み中の電源断、ノイズ等混入により、更新動作に支障をきたし、最悪の場合、Enet-Sが動作しなくなる可能性もあります。ファームウェアの更新作業により生じた直接、間接の障害について当社はその責任を負わないものとします。

ファームウェア書き換え用プログラム「Enet-S Rewrite Prog.exe」は、 日本語 Windows2000、WindowsXP、Windows7、Windows8 のみで動作致 します。

7-4-1 ファームウェアの更新作業


1) Enet-Sと RS232Cを持つ WindowsPCを接続して、PC 上で RS232C ターミナル ソフトを通信速度: 9600bps、データ長: 8、ストップビット: 2、パリティ: 無 の設定で起動します。(TermWin等のターミナルソフト)

Enet-Sの正面プログラムモード SW を押しながら 電源を入れ、PROG LEDの赤点灯を確認出来たらプログラムモード SW を離して下さい。

RS232Cより 強制プログラムモードに入ります。

現在のファームウェアのバージョンノ日付を確認します。

確認後、プログラムモードを抜けます。LANケーブルは外します。

2) 弊社 HPの TOPページ左側の [ファームウェアダウンロード]のリンクをクリックして、最新 FW の書き換えを行う WindowsPC にダウンロードします。また、CD に添付の Enet-Sファームウェア書き換えプログラム [Enet-S Rewrite Prog.exe] も同じ FW を書き換えを行う WindowsPC に COPY します。ダウンロードした [新ファームウェアファイル]と [Enet-S Rewrite Prog.exe] は、同じフォルダに COPY して下さい。

3) [Enet-S Rewrite Prog.exe]の起動

Enet-S と RS232C 通信を行う PC 側の COM ポートを選択 状態表示エリア

ファームウェア選択ボタン

"選択されたファームウェアファイル名表示エリアファームウェアの書き込み開始ボタンファームウェア書き込み中、進捗表示バー書き込み結果表示エリア

4) ファームウェア書き込み手順

- ア) 前述、「Enet-S Rewrite Prog.exe」を起動します。 他のプログラムは停止します。
- イ) Enet-Sと PCの COM ポートと RS232Cで接続されている事を確認します。 COM ポート Noも確認します。

Enet-Sの電源は、OFFの状態で行います。

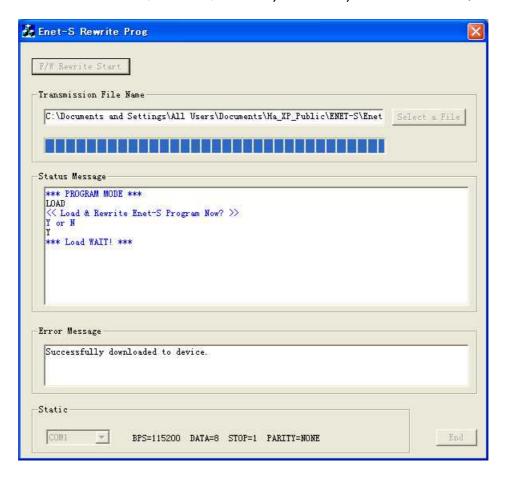
Enet-Sの LAN ケーブルは外しておきます。

- ウ) 次ページ画面 のように前述イ)で確認した COM ポートを選択します。
- エ) Enet-Sのプログラム SW を押しながら 電源を ON します。
 PROG LEDの 赤点灯を確認したらプログラム SWを離しプログラムモード
 に入ります。

次ページ画面のように、書き込み手順が自動的に開始されます。

オ) 次ページ画面 の全てのメッセージが表示され、Enet-Sの LED,CONNE CT.PACKET.PROGがオレンジで点滅している事を確認します。

- カ) 下記画面 の [Select a File] ボタンをクリックし書き込みを行い、前述のダウンロードしたファームウェアを選択します。ファームウェアの名称は、[Enet-S-20130705.bin] の様な形式になります。ファームウェアが選択されると、にファームウェアファイル名がパスととも
- キ) 選択したファームウェアファイルに間違いが無い事を確認して、下記画面の [FW Rewrite Start] ボタンをクリックすると、ファームウェアの書き込みが開始されます。


に表示されます。

書き込み中は、下記画面 にプログレスバーが表示され進捗を通知します。 Enet-SのLED CONNECT, PACKETが緑点灯、PROGが赤点灯となります。

- ク) ファームウェア書き込みが正常終了すると、下記画面 のように Error Mes sage 欄に成功メッセージの表示となります。 この時、下記画面 の手順の表示と のプログレスバー表示は消えます。 Enet-S は、自動的に再起動となり、LED が緑で数回点滅後消灯します。
- ケ) 再度、プログラムモードに入りファームウェアが更新された事を確認しま す。これでファームウェアの更新が終了となります。

手順通りにならない場合、エラー画面が表示される場合は、手順ア)から再度やり直して下さい。

複数台の書き込みを行う場合は、手順イ)~手順ク)を繰り返します。

保証規定

1 当社製品は、当社規定の社内評価を経て出荷されておりますが、保証期間内に万一故障した場合、無償にて修理させていただきます。お買い求めいただいた製品は、受領後直ちに 梱包を開け、検収をお願い致します。

Enet-Sの保証期間は、当社発送日より5カ年です。

<u>保証期間は、製品貼付のシリアルナンバーで管理しており、保証書はございません。</u> なお、本製品のハードウエア部分の修理に限らせていただきます。

- 2 万一当社製品に RoHS 指令基準値を超える 六物質 (鉛、水銀、カドムウム、六価クロム、 PBB、PBDE) が含まれていた場合は、購入後1年以内に限り製品の交換もしくは、部品 に含有していた場合はその部品のみの交換 (修理) となります。
 - 保証の総額は製品価格が限度となります。
- 3 本製品の故障、またはその使用によって生じた直接、間接の障害について、当社はその責任を負わないものとします。
- 4 次のような場合には、保証期間内でも有償修理になります。
 - (1) お買い上げ後の輸送、移動時の落下、衝撃等で生じた故障および損傷。
 - (2) ご使用上の誤り、あるいは改造、修理による故障および損傷。
 - (3) 火災、地震、落雷等の災害、あるいは異常電圧などの外部要因に起因する故障および損傷。
 - (4) 当社製品に接続する当社以外の機器に起因する故障および損傷。
- 5 無償保証期間経過後は有償にて修理させていただきます。補修用部品の保有期間は原則製造終了後5年間です。
 - なお、この期間内であっても、補修部品の在庫切れ、部品メーカの製造中止などにより修理できない場合があります。
- 6 PCB 基板全損、IC 全損など、故障状態により修理価格が新品価格を上回る場合は修理できません。。
- 7 出張修理は致しておりません。当社あるいは販売店への持ち込み修理となります。
- 8 本製品に付属、または、別売の AC アダプタは有寿命部品です。本紙巻頭 (表紙裏面) の 【 有寿命部品に関する保証規定】を必ずお読みください。
- 9 上記保証内容は、日本国内においてのみ有効です。

ユーザサポートのご案内

Enet-Sに関するご質問、ご相談は、ユーザサポート 課までお問い合わせ下さい。 データリンク 株式会社 ユーザサポート 課 TEL04-2924-3841代 FAX04-2924-3791 E-mail: support@data-link.co.jp 受付時間 月曜~金曜(祝祭日は除く) AM9:00~PM12:00 PM1:00~PM5:00

> Enet-S 取り扱い説明書 2025年4月 第8版 製造、発売元 データリンク株式会社 〒359-1113 埼玉県所沢市喜多町10-5 TEL04-2924-3841代 FAX04-2924-3791